Total No. of Printed Pages-8

6 SEM TDC CHMH (CBCS) C 14

2022

(June/July)

CHEMISTRY

(Core)

Paper: C-14

(Organic Chemistry)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Select the correct answer from the following:
 - 1×5=5
 - (a) When the λ_{max} of a compound shifts to a shorter wavelength on certain treatment, the compound is said to have undergone
 - (i) bathochromic shift
 - (ii) hypochromic effect
 - (iii) hyperchromic shift
 - (iv) hypsochromic shift

- (b) Dyes which can be applied directly to cotton from water solution are called
 - (i) mordant dyes
 - (ii) vat dyes
 - (iii) sustentive dyes
 - (iv) dispersive dyes
- (c) The NMR spectrum of the compound C_9H_{12} shows two signals at $\tau 3 \cdot 22$ (s, 3H) and $7 \cdot 75$ (s, 9H). Which of the following structures is in conformity with the data?

- (d) The monomers of Buna-S rubber are
 - (i) isoprene and butadiene
 - (ii) styrene and butadiene
 - (iii) adipic acid and hexamethylene diamine
 - (iv) chloroprene
- (e) Epimeric carbohydrates differ in their
 - (i) configuration at α -C atom
 - (ii) number of -OH groups
 - (iii) ring size
 - (iv) None of the above

Unit-I

- 2. Answer the following questions:
 - (a) Calculate λ_{max} in UV spectrum for the following: 1×3=3

- (b) Account for the following observations: 2×2=4
 - (i) Ethylene is colourless, but a polyene, e.g., CH₃(CH=CH)₆CH₃ is yellow.
 - (ii) 1,4-pentadiene does not absorb light above 200 nm.
- (c) Pent-1-ene absorbs at 176 nm. The absorption data, λ_{max} for three isomeric dienes A, B and C of molecular formula C₅H₈ is 178 nm, 211 nm and 215 nm respectively. Write down the structures of A, B and C with proper reasoning.

Or

Using MO theory, account for the following trends in λ_{max} (nm):

Ethylene (175), 1,3-butadiene (217) and 1,3,5,-hexatriene (250)

(d) How will you differentiate between the following pairs of compounds using IR spectra? 1½×2=3

(ii) CH_3CH_2CHO and $H_2C=C-CH_2OH$

22P/1005

(Continued)

2

(e) What will be the multiplicity of each kind of proton in the following molecules?

2

$$(ii) \quad \begin{array}{c} H \\ C \\ \end{array} = C \quad \begin{array}{c} I \\ H \end{array}$$

- (f) A compound, C₉H₁₀O₂, shows the following signals in ¹HNMR spectrum:
 - (i) $\delta 2 \cdot 3 (3H, \text{ singlet})$
 - (ii) $\delta 3 \cdot 6 (3H, \text{ singlet})$
 - (iii) $\delta 6.4-7.5(4H)$, a pair of doublets J = 8 Hz)

Assign a structure to the compound.

3

(g) Identify the compound by analyzing the following data :

2

IR $v(cm^{-1})$: 1600, 1715, 3000

Mass (m/e): 43, 91, 134 (M^+)

NMR δ value : 2 · 1(s, 3H), 3 · 6(s, 2H),

 $7 \cdot 3 (m, 5H)$

(h) Explain the effect of polar solvent on π - π * and n- π * transitions.

2

Or

Why is TMS used as a reference in NMR spectroscopy?

(Turn Over)

UNIT-II

3.	Answer	the	following	questions	:
----	--------	-----	-----------	-----------	---

(a) Establish the cyclic structure of D-glucose.

Or

Explain why D-glucose and D-fructose give the same osazone.

- (b) What is epimerization? Explain it considering the conversion of D-glucose to D-mannose. 1+2=3
- (c) Why does the anomeric —OH group undergo methylation with CH₃OH and HCl under reflux but others do not?
- (d) Complete the following reaction: 3

 D-glucose 3PhNHNH2 Osazone dil. HCl Osone

Zn/AcOH a ketohexose

Unit—III

4. Answer any four of the following questions:

2×4=8

2

(a) What are the requirements of a substance to act as a dye? Name two substances which meet these requirements. ٠.

- (b) How will you synthesize fluorescein?
- (c) How would you prepare Congo red from naphthionic acid? Discuss its use as acid-base indicator.
- (d) What are the chromophores and auxochromes present in the following dyes?
 - (i) Alizarin
 - (ii) Methyl orange
- (e) Give one example of a xanthene dye and mordant azo dye. Also write their structures.

UNIT---IV

- 5. Answer the following questions:
 - (a) What is Ziegler-Natta catalyst? Discuss their importance in the formation of addition polymer.

2

(b) What type of alkenes prefer to undergo cationic polymerization? Discuss the role of electron donating groups in cationic polymerization. 1+2=3

Or

Discuss the mechanism of a peroxideinitiated chain growth polymerization involving any vinyl monomer.

3

(c)	What do you u	understand b	y the	term
	'biodegradable	polymers?	Give	two
	examples.			1+1=2

- (d) How would you prepare the following (any one)?
 - (i) Neoprene
 - (ii) Nylon-6
