3 SEM TDC CHM M 1

Mary Son

@2012

9

(November)

CHEMISTRY

(Major)

Course: 301

(Inorganic Chemistry-I)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer :

 $1 \times 5 = 5$

- (a) The complex which does not obey EAN rule is
 - (i) [Pt(NH₃)₆]⁴⁺
 - (ii) [Fe(CN)6]3-
 - (iii) [Co(NH₃)6]3+
 - (iv) [Cu(CN)4]3-

- The example of a tridentate ligand is (b) triethylene tetramine (i) dimethyl glyoximate anion (ii) (iii) iminodiacetate anion (iv) acetylacetonate anion In the complex [Ti(H2O)6]3+, the metal ion has (i) d1-configuration (ii) d^2 -configuration (iii) d3-configuration (iv) d5-configuration Which of the following has the highest liability? W SF6 (ii) [PF₆] (iii) $[SiF_6]^{2-}$

 - (iv) $[AIF_6]^{3-}$
- The number of 4f-electron lanthanum is
 - (i) 0
 - (ii)
 - (iii) 2
 - (iv)

MP13-1200/218

2. Answer the following:

 $2 \times 5 = 10$

- Write the name and formula of each of the following types of ligand:
 - (i) A bidentate ligand with one acidic and one neutral donor
 - (ii) A tridentate ligand with three neutral donors
- (b) What is spectrochemical series?
 - (c) Explain inert and labile complexes with example.
- What are the L and S values of ³P, ¹D, ³F and ²G?
 - (e) What do you mean by diamagnetism and paramagnetism?
- 3. (a) Write the IUPAC name of the following: 1×2=2
 - (i) [Cr(NH₃)₄Cl₂][Cr(NH₃)₂Cl₄]
 - (ii) $[(NH_3)_5Co-NH_2-Co(NH_3)_4(H_2O)]Cl_5$
 - (b) Write the formula of the following compounds: 1×2=2
 - (i) Sodium ethylenediaminetetraacetatonickelate(II)
 - (ii) μ-Hydroxo-μ-imidotetrakis (ethylene diamine) dicobalt(III) ion

(c) What are macrocyclic ligands? Give the meaning of the numbers 18 and 6 in the complex [Na (18 crown-6)]⁺. 1+1=2

4. Answer either (a) or (b):

(a) (i) On the basis of crystal field theory, explain the splitting of d-orbitals in an octahedral complex.

What do you mean by crystal field stabilization energy (CFSE)?
Calculate CFSE for each of the following octahedral systems: 1+2=3

- 1. d^5 high-spin
- 2. d⁶ low-spin
- (b) (i) Discuss briefly why the d-orbital splitting is larger in octahedral complexes than in tetrahedral one.

 Mention the factors on which splitting depends.

 2+2=4
 - (ii) Explain what you mean by Russell-Saunders coupling. 2

5. Answer either (a) or (b):

(a) (i) How does valence bond theory account for the following? 2+2=4

1. [Fe(H₂O)₆]³⁺ ion is more paramagnetic than [Fe(CN)₆]³⁻ ion.

(ii) Draw and explain the Orgel diagram for a d1-system.

3

Ob (i) Discuss the geometrical isomerism of [Ma₂X₂]^{n±} and [MA₄X₂]^{n±} type complexes.

3

(ii) What are inner complexes? Give the characteristics of inner complexes. Mention one of its uses with example. 1+2+1=4

6. Answer either (a) or (b):

1.
$$[L_5MX] \xrightarrow{\text{slow}} X + [L_5M] \xrightarrow{+Y} [L_5MY]$$

2.
$$[L_5MX] \xrightarrow{\text{slow}} [L_5M < X]$$

$$\xrightarrow{\text{fast}} [L_5MY] + X$$

Write a note on acid hydrolysis of cobalt(III) compounds with suitable example.

3

- (iii) Discuss the following factors on the rate of aquation of a hexacoordinated complex (any one):
 - 1. Charge on the complex
 - 2. Steric effect
- (b) (i) The rate of hydrolysis of a cobalt complex is expressed by the following rate:

Rate = $k[CoL_5X^{n+}][OH^-]$

What type of hydrolysis is it called? Explain the mechanism of such hydrolysis.

- (ii) Explain what you mean by A, D, I_d and I_a mechanism in ligand substitution reaction.
- (iii) What is trans-effect?
- 7. Answer either (a) or (b):
 - (a) (i) What do you understand by lanthanide contraction? Discuss its causes.

(ii) What are the problems in the separation of lanthanides from one another?

4

1

2

(b) Give reasons for the following:

2+11/2+11/2=5

(ii) Ti⁴⁺ ion is more stable than Ti³⁺ ion.

(iii) d-Block elements show variable oxidation state.

* * *