3 SEM TDC CHM M 1 Mary Son @2012 9 (November) CHEMISTRY (Major) Course: 301 ### (Inorganic Chemistry-I) Full Marks: 48 Pass Marks: 19 Time: 3 hours The figures in the margin indicate full marks for the questions 1. Select the correct answer : $1 \times 5 = 5$ - (a) The complex which does not obey EAN rule is - (i) [Pt(NH₃)₆]⁴⁺ - (ii) [Fe(CN)6]3- - (iii) [Co(NH₃)6]3+ - (iv) [Cu(CN)4]3- - The example of a tridentate ligand is (b) triethylene tetramine (i) dimethyl glyoximate anion (ii) (iii) iminodiacetate anion (iv) acetylacetonate anion In the complex [Ti(H2O)6]3+, the metal ion has (i) d1-configuration (ii) d^2 -configuration (iii) d3-configuration (iv) d5-configuration Which of the following has the highest liability? W SF6 (ii) [PF₆] (iii) $[SiF_6]^{2-}$ - (iv) $[AIF_6]^{3-}$ - The number of 4f-electron lanthanum is - (i) 0 - (ii) - (iii) 2 - (iv) MP13-1200/218 #### 2. Answer the following: $2 \times 5 = 10$ - Write the name and formula of each of the following types of ligand: - (i) A bidentate ligand with one acidic and one neutral donor - (ii) A tridentate ligand with three neutral donors - (b) What is spectrochemical series? - (c) Explain inert and labile complexes with example. - What are the L and S values of ³P, ¹D, ³F and ²G? - (e) What do you mean by diamagnetism and paramagnetism? - 3. (a) Write the IUPAC name of the following: 1×2=2 - (i) [Cr(NH₃)₄Cl₂][Cr(NH₃)₂Cl₄] - (ii) $[(NH_3)_5Co-NH_2-Co(NH_3)_4(H_2O)]Cl_5$ - (b) Write the formula of the following compounds: 1×2=2 - (i) Sodium ethylenediaminetetraacetatonickelate(II) - (ii) μ-Hydroxo-μ-imidotetrakis (ethylene diamine) dicobalt(III) ion (c) What are macrocyclic ligands? Give the meaning of the numbers 18 and 6 in the complex [Na (18 crown-6)]⁺. 1+1=2 ### 4. Answer either (a) or (b): (a) (i) On the basis of crystal field theory, explain the splitting of d-orbitals in an octahedral complex. What do you mean by crystal field stabilization energy (CFSE)? Calculate CFSE for each of the following octahedral systems: 1+2=3 - 1. d^5 high-spin - 2. d⁶ low-spin - (b) (i) Discuss briefly why the d-orbital splitting is larger in octahedral complexes than in tetrahedral one. Mention the factors on which splitting depends. 2+2=4 - (ii) Explain what you mean by Russell-Saunders coupling. 2 # 5. Answer either (a) or (b): (a) (i) How does valence bond theory account for the following? 2+2=4 1. [Fe(H₂O)₆]³⁺ ion is more paramagnetic than [Fe(CN)₆]³⁻ ion. (ii) Draw and explain the Orgel diagram for a d1-system. 3 Ob (i) Discuss the geometrical isomerism of [Ma₂X₂]^{n±} and [MA₄X₂]^{n±} type complexes. 3 (ii) What are inner complexes? Give the characteristics of inner complexes. Mention one of its uses with example. 1+2+1=4 6. Answer either (a) or (b): 1. $$[L_5MX] \xrightarrow{\text{slow}} X + [L_5M] \xrightarrow{+Y} [L_5MY]$$ 2. $$[L_5MX] \xrightarrow{\text{slow}} [L_5M < X]$$ $$\xrightarrow{\text{fast}} [L_5MY] + X$$ Write a note on acid hydrolysis of cobalt(III) compounds with suitable example. 3 - (iii) Discuss the following factors on the rate of aquation of a hexacoordinated complex (any one): - 1. Charge on the complex - 2. Steric effect - (b) (i) The rate of hydrolysis of a cobalt complex is expressed by the following rate: Rate = $k[CoL_5X^{n+}][OH^-]$ What type of hydrolysis is it called? Explain the mechanism of such hydrolysis. - (ii) Explain what you mean by A, D, I_d and I_a mechanism in ligand substitution reaction. - (iii) What is trans-effect? - 7. Answer either (a) or (b): - (a) (i) What do you understand by lanthanide contraction? Discuss its causes. (ii) What are the problems in the separation of lanthanides from one another? 4 1 2 (b) Give reasons for the following: 2+11/2+11/2=5 (ii) Ti⁴⁺ ion is more stable than Ti³⁺ ion. (iii) d-Block elements show variable oxidation state. * * *