Total No. of Printed Pages—6

3 SEM TDC CHM M 1

2013

W D

(November)

4.

CHEMISTRY

(Major)

Course: 301

(Inorganic Chemistry-I)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

 $1 \times 5 = 5$

- (a) Which of the following compounds does not exhibit geometrical isomerism?
 - (i) [Pt(NH₃)₂Cl₂]
 - (ii) $[Co(NH_3)_4Cl_2]$
 - (iii) [Mn (CN)₂Cl₂]²⁻
 - (iv) [Mn (CN) 4 Cl2] 4-

(b)	Which	of	the	following	ligands	has	the
	lowest	Δη	val	ue?			

- (i) CN
- (ii) CO
- (iii) F
- (iv) NH3
- (c) The spectroscopic free ion ground term for d^1 is
 - (i) 2D
 - (ii) ⁵D
 - (iii) ³F
 - (iv) 4 F

(a) which of the following is least labile?

- (i) Ba $(H_2O)_6^{2+}$
- (ii) $Mg(H_2O)_6^{2+}$
- (iii) $Sr(H_2O)_6^{2+}$
- (iv) $Ca(H_2O)_6^{2+}$
- (e) The electronic configuration of gadolinium (Z = 64) is
 - (i) $[Xe]4f^15d^76s^2$
 - (ii) $[Xe]4f^7 5d^1 6s^2$
 - (iii) $[Xe]4f^35d^56s^2$
 - (iv) $[Xe]4f^65d^26s^2$

2. Answer the following questions:

 $2 \times 5 = 10$

- (a) Write the name and structure of one macrocyclic ligand.
- (b) Give the IUPAC name of the following:

- (ii) [Pt(Py)4][PtCl4]
- (c) Define term symbol with example.
- (d) What do you mean by concerted path of a reaction? Give an example.
- (e) Explain the causes of lanthanide
- 3. (a) Write the formula of the following compounds: 1×2=2
 - (i) Diamidotetraamminecobalt(III) methoxide
 - (ii) Tetraaminechloronitrito-N-cobalt(III) chloride
 - (b) That is Sidgwick effective atomic number rule? Determine the effective atomic number of the following compounds:

 1+3=4
 - (i) Fe (CO)₂ (NO)₂
 - (ii) Mn₂(CO)₁₀
 - (iii) [Fe(CN)₆]³⁻

	ver any three questions: 5×3=1	15
4. Answ (a)	What are high-spin and low-spin complexes? Predict the spin state of the following and write down the configurations corresponding to these states:	
	(i) [Co(NH ₃) ₆] ³⁺ , pairing energy	
	= $21000 \text{ cm}^{-1} \text{ and } \Delta = 23000 \text{ cm}^{-1}$	
	(ii) $[Cr(H_2O)_6]^{3+}$, pairing energy	
	= $23500 \text{ cm}^{-1} \text{ and } \Delta = 13400 \text{ cm}^{-1}$	
	1+2+2=	=5
(b)	(i) Discuss the optical isomerism of metal coordination compounds of	
-	the types $[M(A-A)_2ab]^{n\pm}$ and	
	$[M(A-A)_3]^{n\pm}.$	3
	(ii) What do you mean by naphelauxetic effect?	2
(c)	Calculate the number of unpaired electrons (n) , spin only magnetic moments μ_s and CFSE in terms of Δ_0 for the complex ion $[Cr(H_2O)_6]^{2+}$. What are the limitations of crystal field theory?	
		=5
(d)	Explain the structure of the following compounds with the help of valence bond theory:	
	(i) Hexaaquoiron(III) ion	-
10	(iii) Hexalluorocobaltata(III)	
4P—150	0/126	

14P—1500/126

(Continued)

(e)	octah	the splitting patterns for ledral, tetrahedral and square complexes in a crystal field. Sin why $\Delta_0 > \Delta_t$.	=5							
Answer either (a) or (b):										
(a)	(i)	What is base hydrolysis? Discuss the mechanism of base hydrolysis of the complex [Co(NH ₃) ₅ Cl] ²⁺ .	5							
	(ii)	Write the structure of the intermediate that are formed in $S_N 1$ and $S_N 2$ mechanism of $[MA_5X]^{n+}$.	2							
	-									
	(iii)	16 (1120/6)								
		[Fe(CN) ₆] ⁴⁻ is inert. Explain.	2							
(b)	(i)	Explain the associative and dissociative mechanism in ligand substitution reaction.	4							
	(îi)	Discuss briefly what type of mechanism for acid hydrolysis of octahedral complexes is suggested by— (1) charge on the substrate;								
		(2) strength of metal-leaving group bond.	4							
,	(iii)		1							

5.

- 6. Answer any one question:
 - (a) Actinides exhibit large variety of oxidation states than lanthanides. Explain.
 - (b) Give three points of difference between lanthanides and actinides.

* * *