3 SEM TDC CHM M 1

2015

(November)

CHEMISTRY

(Major)

Course: 301

(Inorganic Chemistry-I)

Full Marks: 48

Pass Marks: 19 (Backlog) / 14 (2014 onwards)

Time: 2 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

 $1 \times 5 = 5$

- (a) The spectroscopic free ion ground term for d^{10} configuration is
 - (i) 1S
 - (ii) 2S
 - (iii) ²D
 - (iv) 3 F

- (i) [Cu(CN)₄]²⁻
- (ii) [Fe(CN)₆]⁴⁻
- (iii) [Mn(H₂O)₆(2+5") +
- (iv) [Ag(NH₃)₄]⁺
- (c) Which of the following methods can be used to differentiate between cis- and trans-isomer?
 - (i) Dipole moment measurement
 - (ii) Infrared spectroscopic technique
 - (iii) Optical activity measurement
 - (iv) All of the above
- (d) Which of the following reacts most rapidly?
 - (i) [Co(CN)₆]³-
 - (ii) [Ni(CN)4]2-
 - (iii) [Cr(CN)₆]³-
 - (iv) [Mn(CN)6]4-

- (e) Which of the following elements has electronic configuration [Xe] $4f^65d^16s^2$?
 - (i) Americium
 - (ii) Californium
 - (iii) Europium
 - (iv) Fermium
- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Write the formula of the following compounds:
 - (i) Tris-(trimethyl phosphine) copper(I) perchlorate
 - (ii) Decammine-µ-amido dicobalt(II) ion
 - (b) Define effective atomic number (EAN). Calculate EAN for the central atom in the complex [Co(NH₃)₄Cl₂]Br.
 - (c) What do you mean by diamagnetism and paramagnetism?
 - (d) Explain inert and labile complexes with example.
 - (e) Discuss the causes of lanthanide contraction.

3. (a) Give the IUPAC names of the following: 2

(i)
$$\begin{bmatrix} (CO)_3 \text{Fe} & CO \\ CO & \text{Fe}(CO)_3 \end{bmatrix}$$

- (ii) [Pt(NH₃)₄Cl₂][Pt(CN)₄]
- (b) Define macrocyclic ligand. Give the meaning of the numbers 18 and 6 in the complex [Na (18-crown-6)]⁺.
- (c) How will you distinguish between [FeBr(NH₃)₅]SO₄ and [FeSO₄(NH₃)₅]Br? 1
- 4. Answer any four questions: 4×4=16
 - (a) What do you mean by the term in spectroscopy? Write the spectroscopic free ion ground terms for the following:

 $1+(1\frac{1}{2}\times 2)=4$

- (i) d^3
- (ii) d^5
- (b) On the basis of valence bond theory, explain the shape and magnetic behaviour of the following:

 (i) [Ni(CN)₄]²⁻

 2+2=4
 - (ii) [FeF₆]³-

(c)	Using crystal field theory and spin only					
	formula,	calcu	late	the	magnetic	
	moments	of		$(H_3)_6]^2$	+ and	
	$[MnCl_4]^{2-}$.				2+2	2=4

- (d) Discuss the splitting of d-orbitals in an octahedral field.
- For the complex ions $[Mn(H_2O)_6]^{3+}$ and $[Fe(CN)_6]^{4-}$, the electron pairing energies (P) are found to be 25,500 cm⁻¹ and 17,600 cm⁻¹ respectively. The magnitudes of Δ_0 are 7800 cm⁻¹ and 33,000 cm⁻¹ respectively. Calculate crystal field stabilization energy for the complex ions.
- (f) (i) Write a note on spectrochemical series.
 - (ii) Tetrahedral complexes are generally high spin. Explain. 2

5. Answer either (a) or (b):

(a) (i) Explain associative and dissociative mechanisms in ligand substitution reactions in octahedral complexes. 4

- (ii) What do you mean by acid hydrolysis? Discuss the effect of the following factors on the rate of acid hydrolysis of a hexacoordinated complex:
 - (1) Charge on the complex
 - (2) Strength of metal-leaving group
- (b) (i) What is base hydrolysis? Discuss the mechanism of base hydrolysis of $[Co(NH_3)_5Cl]^{2+}$. 1+4=5
 - (ii) Hydrolysis of $[Fe(CN)_5(NH_3)]^{3-}$ does not proceed through $S_N 1$ (cB) mechanism. Why?
 - (iii) What is trans-effect? Starting from [PtCl₄]²⁻, outline the preparation of cis- and trans-[Pt(NH₃)(C₂H₄)Cl₂].

1+2=3

3

3

1

- 6. Answer any one question:
 - (a) Explain the fact that the most common oxidation state of the three elements La (57), Gd (64) and Lu (71) is +3.
 - (b) What are the consequences of lanthanide contraction?

* * *