5 SEM TDC CHM M 1

2021

(March)

CHEMISTRY

(Major)

Course: 501

(Physical Chemistry—II)

Full Marks: 48 Pass Marks: 14

Time: 2 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer: 1×5=5

- Temperature dependence of reaction (a) rate is given by
 - (i) Arrhenius equation
 - (ii) Eyring equation
 - (iii) both Arrhenius and Eyring equations
 - (iv) Kirchhoff's equation

(b) When benzoic acid is distributed between benzene and water, benzoic acid dimerises in organic layer. Correct form of Nernst distribution law for this distribution is

(i)
$$K_D = \frac{C_{\text{org}}}{C_{\text{aq}}}$$

MAD DUT MIE

(ii)
$$K_D = \frac{\sqrt{C_{\text{org}}}}{C_{\text{aq}}}$$

(iii)
$$K_D = \frac{C_{\text{org}}}{\sqrt{C_{\text{aq}}}}$$

(iv)
$$K_D = \sqrt{\frac{C_{\text{org}}}{C_{\text{aq}}}}$$

- (c) Variation of equilibrium constant with temperature is given by
 - (i) Gibbs-Duhem equation
 - (ii) Duhem-Margules equation
 - (iii) van't Hoff equation
 - (iv) None of the above

- (d) The adsorbent used in gas masks to adsorb all toxic gases and vapours is
 - (i) silica gel
 - (ii) alumina
 - (iii) finely divided nickel
 - (iv) activated charcoal
- (e) Stability of lyophobic solution is due to
 - (i) the electrical charge present on the colloidal particles
 - (ii) solvation
 - (iii) both the electrical charge present on the colloidal particles and solvation
 - (iv) the size of the colloidal particles
- 2. Answer the following questions: 2×5=10
 - (a) Write two important characteristics of a first-order reaction.
 - (b) State and explain Raoult's law.
 - (c) On the basis of Le Chatelier's principle, discuss the effect of temperature and pressure on equilibrium.

(d)	Discuss the		application of		adsorption
	on chen	nical	analysis.		

- (e) Define the terms 'electrophoresis' and 'electroosmosis'. 1+1=2
- 3. Answer any two questions from the following: 6×2=12
 - (a) (i) Derive the integrated rate equation for a second-order reaction A+B → products. Under what condition, the reaction follows first-order kinetics?
 - (ii) Show that for a first-order reaction, the time required for 75% completion of the reaction is two times of its half-life period.
 - (b) (i) For an exothermic reaction, the activation energy for the forward reaction is always less than the activation energy for the backward reaction. Explain.
 - (ii) Derive Eyring equation on the basis of activated complex theory.

16-21/43

2

2

4

(c) (i) For a reversible first-order reaction, $A
ightharpoonup k_f
ightharpoonup C, show that$

$$(k_b + k_f) = -\frac{1}{t} \ln \frac{[A] - [A]_{eq}}{[A]_o - [A]_{eq}}$$

where, $[A]_0$ and $[A]_{eq}$ are the initial and equilibrium concentration of A.

- (ii) Half-life of a first-order reaction is 30 minutes at 27 °C and 10 minutes at 47 °C. Calculate the energy of activation.
- 4. Answer any one question from the following: 5
 - (a) (i) Derive a relationship between osmotic pressure and lowering of vapour pressure of an ideal solution thermodynamically.
 - (ii) 0.5% aqueous solution of KCl was found to freeze at -0.24 °C. Calculate the van't Hoff factor. $(K_f = 1.86 \text{ K kg mol}^{-1})$
 - (b) Discuss the application of Nernst distribution law in solvent extraction. Show that multi-step solvent extraction is more efficient than single-step extraction. 2+3=5

2

4

1

5. Answ	er :	any one question from the following:	7
(a)	(i)	Derive Duhem-Margules equation.	31/2
pull pull		For a system of ideal gases, prove that $\mu = \mu^0 + RT \ln p_i$.	3½
(b)	(i)	Show that $\left(\frac{\partial G}{\partial T}\right)_{p,n_1,n_2,\dots} = -S$	2
	(ii)	Define chemical potential. What is its physical significance? 1+	1=2
E : griwa	(iii)	Discuss the variation of chemical potential with temperature.	3
		ny one question from the following:	4
		Heat of adsorption is greater for chemisorption than physisorption. Explain.	
terrisk militari terrisk militari terrisk militari terrisk		At 0°C and 1 atm pressure, the volume of nitrogen gas required to cover a sample of silica gel, assuming Langmuir monolayer adsorption, is found to be 130 cm ³ g ⁻¹ of the gel. Calculate the surface area per gram of silica gel. Given that the area occupied by a nitrogen molecule is 0·162 (nm) ² .	2
16-21 /43		(Cont.	
		(Continue	ed)

(b)	Explain Freundlich adsorption equation						
	with the significance of the terms						
	involved. What will be the form of this						
	equation for adsorption from solution?						
	What is the limitation of Freundlich						
	adsorption isotherm? 2+1+1=4						

7. Answer any one question from the following: 5

- (a) (i) If a freshly formed stannic oxide is peptized by a small amount of hydrochloric acid, the solution carries a positive charge. But, if peptized by a small amount of sodium hydroxide, the solution carries a negative charge. Explain.
 - (ii) What do you mean by flocculation and flocculation value? Explain why MgCl₂ is better coagulant than NaCl for As₂S₃ solution. 2+1=3
- (b) (i) Discuss the origin of charge on colloidal particles. 2
 - (ii) What is peptization?
 - (iii) Define the term 'critical micelle concentration' (CMC). Mention two properties of the ionic surfactant solution which undergoes abrupt change at CMC.

2

1