3 SEM TDC PHYH (CBCS) C 7

2021

(Held in January/February, 2022)

PHYSICS

(Core)

Paper: C-7

(Digital Systems and Applications)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option:

1×5=5

- (a) In a CRT, the focus can be controlled by
 - (i) adjusting the positive potential of the anode
 - (ii) adjusting the negative potential of the grid
 - (iii) adjusting the d.c. potential of the horizontal deflection plates
 - (iv) adjusting the d.c. potential of the vertical deflection plates

(Turn Over)

- (b) The binary equivalent of the decimal number 52.875 is
 - (i) 100110.101
 - (ii) 100100.110
 - (iii) 110100.111
 - (iv) 111010.011
- (c) The maxterm which is missing in the expression $A(\overline{B} + A)B$ is
 - (i) M₀
 - (ii) M₁
 - (iii) M₂
 - (iv) M_3
- (d) Which of the following is not correct?
 - (i) $\overline{A \oplus B} = \overline{A} \oplus B$
 - (ii) $A \oplus B = \overline{A} \oplus \overline{B}$
 - (iii) A + BC = (A + B)(A + C)
 - (iv) $A \oplus \overline{A} = 0$

(e) When a flip-flop is reset, its outputs will be

(i)
$$Q=0$$
, $\overline{Q}=0$

(ii)
$$Q=1$$
, $\overline{Q}=0$

(iii)
$$Q = 0$$
, $\overline{Q} = 1$

(iv)
$$Q=1$$
, $\overline{Q}=1$

- 2. Draw the block diagram of a general purpose CRO and mention the different parts.
- 3. What are different scales of integration? Mention the number of components in each scale of integration.
- **4.** (a) Describe how NAND gate can be used to realize XOR gate.
 - (b) Draw the logic diagram and write the truth table of an even parity bit generator using XOR gate (consider 4-bit input).

2

2

3

5. Draw the simplest possible logic diagram that implements the output of the logic diagram shown below:

Or

Reduce the expression $f = \Sigma m(0, 2, 3, 4, 5, 6)$ using K-map and implement it using AOI logic. 2+1=3

- 6. Draw the logic diagram of a decimal to BCD encoder and explain its working. 2+2=4
- 7. (a) Describe the 2's complement method of subtraction.
 - (b) What is half adder? Draw the logic diagram for half adder using only NAND gates. 1+2=3

22P/96

3

8. How does a *J-K* flip-flop differ from an *S-R* flip-flop in its operation? Draw the logic diagram of an active-high *S-R* latch using only NAND gates and describe its operation.

1+3=4

Or

What is race around condition in flip-flop?

Explain how master-slave flip-flops can eliminate this condition.

1+3=4

- 9. Draw the functional block diagram of an IC-555 and explain the function of each pin.3
- 10. Draw the logic diagram of 4-bit serial-in, parallel-out shift register using *D* flip-flops. 2
- 11. What is ring counter? Describe the working of a 4-bit ring counter. 1+3=4

Or

What is synchronous counter? Describe the procedure for systematic design of any synchronous counter. 1+3=4

- 12. (a) What are different types of secondary memory? Write one advantage of DDR RAM.
 - (b) Explain the functions of different buses present in a computer.

3

13.	(a)	microprocessor?					
	(b)	Describe	the	different	types	of	

(b) Describe the different types of addressing modes of 8085 microprocessor. 2

4

4

Or

Draw the simplified block diagram of 8085 microprocessor showing the main units.

14. Define opcode and operant. Explain the arithmetic instruction of 8085 with example.

1+2=3

* * *