5 SEM TDC DSE PHY (CBCS) DSE 1 (H)

2021

(Held in January/February, 2022)

PHYSICS

(Discipline Specific Elective)

(For Honours)

Paper: DSE-1

(Classical Dynamics)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer: $1 \times 5 = 5$

(a) A particle of mass m moves along a straight line and attached towards a point on this line with a force proportional to the distance x from the point. The Lagrangian of the system is

(i)
$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2$$
 (ii) $\frac{1}{2}mv^2 - \frac{1}{2}kx^2$
(iii) $mv^2 + \frac{1}{2}kx^2$ (iv) $\frac{1}{2}mv^2 - kx$

The rest mass of an electron is m_0 .

What will be its mass when it moves

with velocity 0.6c?

(i)
$$m_0$$
 (ii) $\frac{5}{4}m_0$ (iv) $2m_0$

(Turn Over)

(c) A body with a charge q starts from rest and acquire a velocity 0.5c. Then the new charge on it is

(i)
$$q\sqrt{1-(0.5)^2}$$
 (ii) $\frac{q}{\sqrt{1-(0.5)^2}}$ (iii) $q\sqrt{1-0.5}$ (iv) q

(d) If ϕ is the scalar potential and \overrightarrow{A} is the vector potential, the total potential energy of a charged particle in an electromagnetic field is

(i)
$$q\phi + \frac{q}{c}(\vec{A} \cdot \vec{B})$$
 (ii) $q\phi + \frac{q}{c}(\vec{A} \cdot \vec{E})$
(iii) $q\phi - \frac{q}{c}(\vec{A} \cdot \vec{v})$ (iv) $q\phi + \frac{q}{c}(\vec{A} \cdot \vec{\phi})$

- (e) For a linear oscillatory system, the total energy is proportional to
 - (i) square of the time period
 - (ii) amplitude
 - (iii) square of the amplitude
 - (iv) square of the frequency
- 2. (a) Discuss qualitatively the equations of motion of Newton, Lagrange and Hamilton highlighting the difference between the three.

(b) Set up the Lagrange's equation for a simple pendulum and solve for θ . 4+3=7

5

(c)	State and explain Hamilton's (variational) principle and derive Lagrange's equation from it. 2+4 Or	=6
(d)	Explain homogeneity of time and isotropy of space and their connection with conserved quantities. 3+3 Given that the Hamiltonian has implicit dependence on time, prove that it is a constant of motion. Or	=6
	Show that the shortest distance between two points in a plane is a straight line.	
3. (a)	Explain dynamical equilibrium with examples.	2
(b)	Find the expressions for frequencies of two-coupled one-dimensional harmonic oscillator.	6
4. (a)	A muon (life time 2×10^{-6} sec) traveling through the laboratory at three-fifths the speed of light. How long does it last in the laboratory?	: 4
(b)	Two electrons are leaving a radioactive sample in opposite directions, each having a speed 0.67c with respect to the sample. The relative speed of one electron to the other is 1.34c according to classical physics. What is the	
	relativistic result?	3
22P /382	(Turn Ove	

(c)	Show that the space-time interval is an
	invariant under Lorentz transformation.
(d)	Write down the Lorentz transformation
	equation in matrix form.
	Or
	Is it possible for an external force to be
	acting on a system and relativistic
(e)	momentum to be conserved? Explain. Construct Minkowski space and
(0)	calibrate it.
<i>(f)</i>	Explain simultaneity, length contraction
	and time dilation with the help of
	space-time diagram.
<i>(g)</i>	Discuss the physical conditions of
<i></i>	space-like and time-like intervals. 2+2=4
(h)	Deduce the relativistic energy
	momentum relation $E^2 = p^2c^2 + m_0^2c^4$.
	Or
	Discuss Doppler effect from four-vector perspective.
(i)	Define four-vector, rest mass energy,
	world line and proper time. $1 \times 4 = 4$
(a)	Define fluid, liquid and gas, and
	establish the equation of continuity for
	fluid. 3+5=8
(b)	Write the expression for Reynolds'
	number and explain the states of flow of
	liquid for lower and higher Reynolds'
	number.

5.