1 SEM TDC MTMH (CBCS) C 1

et "good into world do

2021

(Held in January/February, 2022)

MATHEMATICS

(Core)

Paper: C-1

(Calculus)

Full Marks : 60

Pass Marks : 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

Write the value of $\frac{d}{dx}(\cosh x)$. 1 (a) 1. Inverse hyperbolic sine is symmetric (b) about a line. Write that line. 1 Write the value of y_n , if $y = \cos(4x + 3)$. 1 (c) 1 Define point of inflection. (d) Find $\frac{d}{dx}(\tanh\sqrt{1+x^2})$. 2 (e) Show that sinhx is an increasing (f) 2 function of x.

	(g)	Show that $y = x^2$ is concave $(-\infty, \infty)$.	up on	2
	(h)	Show that $\operatorname{cosech}^{-1} x = \sinh^{-1} \frac{1}{x}$ Or	o the c	3
		Find the asymptotes of $x^3 + 2x^2y - xy^2 - 2y^3 + 3xy + 3y^2$	$x^2 + x + 1 = 0$	
	(i)	Find y_n , if $y = \sin^3 x$. Or		3
		Find y_n , if $y = x^3 \sin x$.		
	(j)	Evaluate (any one):		4
		(i) $\lim_{x\to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$		
		(ii) $\lim_{x \to \frac{\pi}{2}} \frac{\tan 5x}{\tan x}$		
2.	(a)	Find $\int \tan^5 x dx$.		3
		Or $\int_{-\infty}^{1} 2a = \frac{3}{2}$	* *	
		Evaluate $\int_0^1 x^2 (1-x)^{\frac{3}{2}} dx$.		
	(b)	Obtain the reduction formula for $\int \sin^n x dx$	or	4
	(c)	Obtain the reduction formula for $\int x^n e^{ax} dx$	or	4
2P/	52		Continued	

Or

Find the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3about the line x = 3.

- (d) Find the volume of the solid generated by revolving the region bounded by the curves and lines y = x, $y = -\frac{x}{2}$, x = 2 about the y-axis.
- 3. (a) Write the equation $x^2 + y^2 = 1$ in parametric form.
 - (b) A function y = f(x) is defined on [a, b]. Write the domain of the function after given a natural parametrization

$$x=t, \ y=f(t)$$

- (c) Write the parametric formula for $\frac{d^2y}{dx^2}$. 1
- (d) Write the equivalent Cartesian equation of the polar equation $r \cos \theta = 2$.
- (e) Find the eccentricity of the ellipse $2x^2 + y^2 = 2$.
- (f) Find the polar equation of xy = 1. 2
- (g) Find the Cartesian equation from the parametric equation

$$x = 4 \cot t, \ y = 2 \sin t, \ 0 \le t \le 2\pi$$
 3

4

1

1

(h) Find a parametrization for the curve having the lower half of the parabola $x-1=y^2$.

4

control of the boar Or

Find an equation for the line tangent to the curve $x = 2\cos t$, $y = 2\sin t$ at the point $t = \frac{\pi}{4}$.

4. (a) Define limit of a vector valued function.

1

1

(b) Let the position of a moving particle is given by

 $\vec{r}(t) = (\sec t)\hat{i} + (\tan t)\hat{j} + \frac{t^3}{3}\hat{k}$

Find the acceleration at any time t. 2

(c) Evaluate the integral

 $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} [(\sin t)\hat{i} + (1 + \cos t)\hat{j} + (\sec^2 t)\hat{k}]dt$ 3

- (d) Write the value of $\begin{bmatrix} \vec{a} & \vec{b} & \vec{a} \end{bmatrix}$.
- (e) Let $\vec{U}(t)$ and $\vec{V}(t)$ are differentiable vector function of t. Show that

 $\frac{d}{dt}(\vec{U}\cdot\vec{V}) = \vec{U}'\cdot\vec{V} + \vec{U}\cdot\vec{V}'$

Or

Find the normal component of acceleration of a moving particle.
