1 SEM TDC MTMH (CBCS) C 2

2021

(Held in January/February, 2022)

MATHEMATICS

(Core)

Paper: C-2

(Algebra)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Write the complex number $\sqrt{2}(1+i)$ in the polar form.
 - (b) Find the equation whose roots are the nth power of the roots of the equation $x^2 2x \cos \theta + 1 = 0$.
 - (c) Let $cis\theta = cos\theta + i sin\theta$. If $x = cis\alpha$, $y = cis\beta$, $z = cis\gamma$ and x + y + z = xyz, then show that

$$1 + \cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = 0$$

(Turn Over)

1

Or

If α denotes	any nth	roots	of unity.	then
show that 1	$+\alpha + \alpha^2$	+	$+\alpha^{n-1}=0$).

- (d) Using De Moivre's theorem, find the expansions of $\cos n\theta$ and $\sin n\theta$ where $n \in \mathbb{N}$ and hence deduce the expansions of $\cos \alpha$ and $\sin \alpha$ in powers of α .
- 2. (a) State whether true or false:

 Union of two transitive relations is a transitive relation.
 - (b) Consider the functions $f: \mathbb{N} \to \mathbb{Z}$ defined by f(n) = -2n and $g: \mathbb{N} \to \mathbb{R}$ defined by $g(n) = \frac{1}{n}$. Investigate the existence of $g \circ f$ justifying your assortion.
 - (c) Show that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
 - (d) Define an injective mapping. Show that the mapping $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x is injective.
 - (e) Let n be a non-zero fixed integer. For any integers a and b, define a relation $a \equiv b \pmod{n}$ if and only if n divides a b. Show that this relation is an equivalence relation.

4

1

2

2

Show that intersection of two equivalence relations on a set is again an equivalence relation.

and prove the well ordering (f)property of the set of positive integers.

Show by the principle of mathematical induction that

$$1^2 + 2^2 + \dots + n^2 = \frac{n}{6}(n+1)(2n+1)$$

Let $f: A \to B$; $g: B \to C$; $h: C \to D$ be (g) mappings. Show that

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Let g. c. d.(a, b) = 1. Show that (h)

g. c. d.
$$(a+b, a^2 - ab + b^2) = 1$$
 or 3

Let a and b be two integers. Suppose (i) either $a \neq 0$ or $b \neq 0$. Show that there exists a greatest common divisor d of a, b such that d = ax + by for some integers x and y which is uniquely determined by a and b.

4

- 3. (a) State whether true or false:

 "Finding the parametric description of the solution set of a linear system is the same as solving the system."
 - (b) State which of the following statement/ statements is/are false:
 - (i) The weights $c_1, c_2,, c_n$ in a linear combination $c_1v_1 + c_2v_2 + c_nv_n$ of vectors $v_1, v_2,, v_n$ can not all be zero.
 - (ii) Another notation of the vector $\begin{bmatrix} a \\ b \end{bmatrix}$
 - (iii) An example of a linear combination of vectors v_1 and v_2 is $\frac{1}{2}v_1$.
 - (iv) None of the above are true.
 - (c) Given $A = \begin{bmatrix} -2 & -6 \\ 7 & 21 \\ -3 & 9 \end{bmatrix}$.

Find one non-trivial solution of Ax = 0. 2

(d) Show that the vectors $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$ are linearly dependent.

2

(e) Give the geometrical interpretation of $span\{u, v\}$ where

$$u = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} \text{ and } v = \begin{bmatrix} 0 \\ 1 \\ 6 \end{bmatrix}$$

Indicate the subspace represented by the span.

(f) Define linear independence of vectors. Show that the columns of the matrix

$$A = \begin{bmatrix} 4 & 3 \\ -2 & -3 \\ 6 & 9 \end{bmatrix}$$
 are linearly independent.
1+2=3

- (g) Show that if an indexed set $S = \{v_1, \ldots, v_n\}$ with $n \ge 2$, is linearly dependent and $v_1 \ne 0$, then some v_j with j > 1 is a linear combination of the preceding vectors v_1, \ldots, v_{j-1} .
- (h) Transform the augmented matrix represented by the linear system,

$$x_1 + 3x_2 + x_3 = 0$$

$$-4x_1 - 9x_2 + 2x_3 = 0$$

$$-3x_2 - 6x_3 = 0$$

(i) to Echelon form indicating the forward phase of row operations.

2

(ii)	ind	licating	the	backwar	on form d phase	by of
	rov	v opera	tions	. 10		

Hence, indicate the basic variables and the free variables. 2+2+1=5

- 4. (a) Define a linear transformation.
 - (b) Show that T(0) = 0 where $T: V \to W$ is a linear transformation.
 - (c) Investigate whether the following transformation is linear or not:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by
$$T(x_1, x_2) = (x_1 + 4, x_2)$$

- (d) If A is an $n \times n$ invertible matrix, determine the column space of A and null space of A.
- (e) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear. Show that T is one-to-one if and only if the equation T(x) = 0 has trivial solution.
- (f) By reducing the matrix

$$\begin{bmatrix} 1 & -3 & 2 & -4 \\ -3 & 9 & -1 & 5 \\ 2 & -6 & 4 & -3 \\ -4 & 12 & 2 & 7 \end{bmatrix}$$

to Echelon form, find the number of pivot columns and the rank.

1

2

3

Or

Find the characteristic equation of the matrix

 $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$

and the eigenvalues.

(g) Given a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x) = Ax where

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Find T(u), T(v) and T(u+v) where $u = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and interpret the effect of the transformation geometrically. 2+2=4

(h) Find a basis for the null space of the matrix

 $A = \begin{bmatrix} -3 & 9 & -2 & -7 \\ 2 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2 \end{bmatrix}$

Or

If $v_1,, v_p$ are eigenvectors corresponding to distinct eigenvalues $\lambda_1,, \lambda_p$ of an $n \times n$ matrix A, then show that the set $\{v_1,, v_p\}$ is linearly independent.

(i) Let A be an invertible matrix. Show that

(i)
$$(A^{-1})^{-1} = A$$

(ii)
$$(AB)^{-1} = B^{-1}A^{-1}$$
 2+3=5

Or

Let $v_1, ..., v_p \in \mathbb{R}^n$. Show that the set of all linear combinations of $v_1, ..., v_p$ is a subspace of \mathbb{R}^n .

