3 SEM TDC MTMH (CBCS) C 5

2021

(Held in January/February, 2022)

MATHEMATICS

(Core)

Paper: C-5

(Theory of Real Functions)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Define limit of function at a point. 1
 - (b) Evaluate the following limits (any one): 2

(i)
$$\lim_{x\to 2} \sqrt{\frac{2x+1}{x+3}}$$

(ii)
$$\lim_{x\to 1} \frac{x-1}{\sqrt{x+3}-2}$$

(c) If $f: A \to R$ and if c is a cluster point of A, then prove that f can have only one limit at c.

3

2. (a) Write the type of discontinuity if

 $\lim_{x \to c^+} f(x) \neq \lim_{x \to c^-} f(x)$

1

(b) When does a function f continuous on a set?

2

(c) Investigate for the point of discontinuity:

 $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$

Or

Let A, $B \subseteq R$ and let $f: A \to R$ and $g: B \to R$ be functions such that $f(A) \subseteq B$. If f is continuous at a point $c \in A$ and g is continuous at $b = f(c) \in B$; then prove that composition $g \circ f: A \to R$ is continuous at c.

(d)	Let $A \subseteq R$, let $f: A \to R$ and let $ f $ be defined by $ f (x) = f(x) $ for $x \in A$ and f
	is continuous at a point $c \in A$. Prove
	that $ f $ is continuous at c .

3

Or

Discuss the continuity f(x) = |x-1| + |x-2| in the interval [0, 3].

- State location of roots theorem. 1 (a) 3.
 - State and prove intermediate value (b) theorem.

4

4

Find the roots of the equation (c) $x^3 - x - 1 = 0$ between 1 and 2 by using location of roots (bisection method) theorem.

Or

Let I be a closed bounded interval and let $f: I \to R$ be continuous on I, then prove that the set $f(I) = \{f(x) : x \in I\}$ is a closed bounded interval.

Write the non-uniformity continuity 4. (a) criteria (any one).

1

(b)	Show that a function $f: R \to R$ given by $f(x) = x^2$ is not uniformly continuous on R .	4
	Or	
	If f and g are each uniformly continuous on R , then prove that composite function $f \circ g$ is also uniformly continuous on R .	
(a)	Find: $\frac{d}{dx}(\tan x^2)$	1
(b)	State Caratheodory's theorem.	2
(c)	$I = [a, b]$ and f is differentiable on the open interval (a, b) and $f'(x) = 0$ for all $x \in (a, b)$, prove that f is constant	
	on I.	3
(a)	Define relative maximum and relative minimum at a point on an interval.	2
(b)	State and prove Rolle's theorem. 1+3	=4

5.

(c) Apply the mean value theorem to prove the following (any one):

4

(i) $e^x \ge 1 + x$ for $x \in R$

(ii)
$$\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}$$

for $a < b$

7. (a) Show that $f(x) = x^3 - 3x^2 + 3x + 2$ is strictly increasing for every value of $x \in R$ except 1.

2

(b) Let $I \subseteq R$ be an interval, let $f: I \to R$, let $c \in I$ and assume that f has a derivative at c and f'(c) > 0, then there is a number $\delta > 0$. Prove that f(x) > f(c) for $x \in I$ and $c < x < c + \delta$.

3

(c) Examine the validity of mean value theorem for the function $f(x) = 2x^2 - 7x + 10$ on [2, 5].

4

Or

If f is differentiable on I = [a, b] and if k is a number between f'(a) and f'(b), then prove that there exists at least one point c in (a, b), where f'(c) = k.

8.	(a)	Write the remainder after n terms of Taylor's theorem in Lagrange's form.	1
	(b)	Write the statement of Cauchy's mean value theorem.	2
	(c)	Deduce from Cauchy's mean value theorem $f(b) - f(a) = \xi f'(\xi) \log \frac{b}{a}$, where	
		$f(x)$ is continuous and differentiable in [a, b] and $a < \xi < b$.	3
	(d)	State and prove Taylor's theorem with Cauchy's form of remainder. Or	6
		Find the approximate value of $\sqrt[3]{1+x}$, $x > -1$ by using Taylor's theorem with $n = 2$.	
9.	(a)	Write the necessary condition for a function $f(x)$ to have relative extremum at $x = c$.	1
	(b)	Determine whether or not $x = 0$ is a point of relative extremum of $f(x) = \sin x - x$.	2
	(c)	Define convex function.	2
	Marine Marine		

22P/91

- (d) Using Maclaurin's series, expand the following in an infinite series in powers of x (any two): $4 \times 2 = 8$
 - (i) $\log(1+x)$
 - (ii) cos x
 - (iii) $\frac{1}{ax+b}$

**