3 SEM TDC MTMH (CBCS) C 6

2021

(Held in January/February, 2022)

MATHEMATICS

(Core)

Paper: C-6

(Group Theory—I)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

What is the inverse of the element (a) 1. 13 in Z_{20} ? 1 List the elements of U(20). 1 (b) Let G be a group and $a, b \in G$ such that (c) $a^3 = e$, $aba^{-1} = b^2$. Find O(b). 2 Let G be a group, then prove that (d) $(ab)^{-1} = b^{-1}a^{-1}, \forall a, b \in G$ 2

(e)	In D_4 , find all elements X such that	
	(i) $X^3 = V$	
	(ii) $X^3 = R_{90}$	
	(iii) $X^3 = R_0$	
	(iv) $X^2 = R_0$	4
	Or	
	Construct a complete Cayley table for D_3 .	
(f)	Prove that the set $G = \{1, 2, 3, 4, 5, 6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7.	5
. (a)	Let H and K be two subgroups of a group G . Then, write the condition such that $H \cup K$ may be a subgroup of G .	1
(b)	Define index of a subgroup in a group.	2
(c)	Prove that a non-empty subset H of a finite group G is a subgroup of G iff $HH = H$.	
		4
(d)	Define normalizer of an element in a group G and also show that $N(a)$ is a subgroup of the group G where $a \in G$.	
2/92	Where $a \in G$.	4

Or

		Prove that $O(C(a)) = 1$ if and only if $a \in Z(G)$.	
	(e)	Prove that the relation of conjugacy is an equivalence relation.	4
3.	(a)	Write all the subgroups of a cyclic group of order 12.	1
	(b)	State Fermat's little theorem.	1
	(c)	Prove that a group of prime order has no proper subgroup.	2
	(d)	Give an example of a cyclic group whose order is not prime.	2
	(e)	Let G be a group and H be a subgroup of G . Let $a, b \in G$. Then show that	
		(i) $Ha = Hb$ iff $ab^{-1} \in H$	
		(ii) Ha is a subgroup of G iff $a \in H$	4
	(f)	Let H be a subgroup of a finite group G . Then prove that the order of H divides the order of G .	5

(g) Prove that an infinite cyclic group has

	exactly two generators.					
	Or					
	Prove that the order of a finite cyclic group is equal to the order of its generator.					
(a)	State Cauchy's theorem for finite abelian group.					
(b)	Prove that quotient group of an abelian group is abelian.					
(c)	Prove that every subgroup of a cyclic					

(d) Let H and K be two subgroups of a group G. Then prove that HK is a subgroup of G if K is normal subgroup of G. Also if H and K both are normal subgroups, then HK is also normal subgroup of G.

group is normal.

(e) If G_1 and G_2 are groups, then prove that (i) identity is the only element common to $G_1 \times \{e_2\}$ and $\{e_1\} \times G_2$ 5

1

2

3

4

(ii)	every element of	of	$G_1 \times$	G_2	can	be
	uniquely express	sed	as	the	prod	uct
	of an element i	in	$G_1 \times$	$\{e_2\}$	by	an
	element in $\{e_1\}$					

(iii)
$$G_1 \times G_2 \cong G_2 \times G_1$$
 1+2+2=5

Or

Let H be a subgroup of a group G such that $x^2 \in H$, $\forall x \in G$. Then prove that H is normal subgroup of G. Also prove that G/H is abelian.

5. (a) Let H be a normal subgroup of a group G and $f: G \to G/H$ such that f(x) = Hx, $\forall x \in G$. Then prove that f is an epimorphism.

(b) Let f be a homomorphism from a group G into a group G'. Then prove that

(i) $f(a^{-1}) = [f(a)]^{-1}, \forall a \in G$

(ii) if O(a) is finite, then O(f(a))|O(a) where $a \in G$

(c) Let H and K be two normal subgroups of a group G such that $H \subseteq K$. Then prove that $\frac{G}{K} \cong \frac{G/H}{K/H}$.

(Turn Over)

5

2

3

5

(d) Prove that the necessary and sufficient condition for a homomorphism of a group G onto a group G' with kernel K to be an isomorphism is that $K = \{e\}$.

5

Or .

State and prove Cayley's theorem.