5 SEM TDC MTMH (CBCS) C 11

2021

(Held in January/February, 2022)

MATHEMATICS

(Core)

Paper: C-11

(Multivariate Calculus)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Define limit of a function of two variables.
 - (b) Find

$$\lim_{(x, y)\to(0, 1)} \frac{x - xy + 3}{x^2y + 5xy - y^3}$$

(c) Show that the function

$$f(x, y) = \begin{cases} \frac{xy^3}{x^2 + y^6}; & (x, y) \neq (0, 0) \\ 0 & ; & (x, y) = (0, 0) \end{cases}$$

is not continuous at (0, 0).

3

1

(Turn Over)

(d) If $u = e^{xyz}$, then show that

$$\frac{\partial^3 u}{\partial x \partial y \partial z} = (1 + 3xyz + x^2y^2z^2)e^{xyz}$$

3

1

4

Or

If $w = x \sin y + y \sin x + xy$, then verify that $w_{xy} = w_{yx}$.

2. (a) Define total differential of a function of two variables.

(b) For changes in a function's values along a helix w = xy + z, $x = \cos t$, $y = \sin t$ and z = t. Find $\frac{dw}{dt}$.

(c) State and prove sufficient condition for differentiability of a function of two variables.

Or

Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \log x$ and z = 2r.

3. (a) Find the equation of tangent plane at (1, 1, 1) for the curve $x^2 + y^2 + z^2 = 3$.

(b) Find the local extreme values of the function

$$f(x, y) = xy - x^2 - y^2 - 2x - 2y + 4$$
 3

5

(c) Find the extreme values of f(x, y) = xy taken on the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$ by the method of Lagrange's multipliers.

Or

The plane x+y+z=1 cuts the cylinder $x^2+y^2=1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin.

4. (a) Find ∇f , if

$$f(x, y, z) = x^2 + y^2 - 2z^2 + z\log x$$
 1

- (b) Prove that $\operatorname{div} \overrightarrow{r} = 3$.
- (c) Find $\operatorname{curl} \overrightarrow{f}$, where

$$\vec{f} = x^2 y \hat{i} + xz \hat{j} + 2yz \hat{k}$$
 2

5. (a) Write one property of double integral. 1

(b) Evaluate

$$\iint\limits_R f(x,y)\,dA$$

- for $f(x, y) = 1 6x^2y$, $R: 0 \le x \le 2$ and $-1 \le y \le 1$.
- (c) Find the area enclosed by the Lemniscate $r^2 = 4\cos 2\theta$.
- 6. (a) Define triple integrals.
 - (b) Evaluate: $\int_{y=0}^{3} \int_{x=0}^{2} \int_{0}^{1} (x+y+z) \, dz \, dx \, dy$
 - (c) Find the volume of the upper region D cut from the solid sphere $\rho \le 1$ by the cone $\phi = \frac{\pi}{3}$.

Or

Find the volume of the region enclosed by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and u + z = 4.

- 7. (a) Write the formula for triple integral in cylindrical coordinates.
- 22P/13

1

2

3

2

2

(b) Evaluate:

4

$$\int_{0}^{2\pi} \int_{0}^{\theta/2\pi} \int_{0}^{3+24r^{2}} dz r \ dr \ d\theta$$

Or

Find the volume of the region in the first octant bounded by the coordinate planes, the plane y=1-x and the surface $z=\cos\frac{\pi x}{2}$, $0 \le x \le 1$.

8. (a) Find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ for the transformation $x = u \cos v$ and $y = u \sin v$.

1

(b) Evaluate

$$\int_0^4 \int_{x=\frac{y}{2}}^{x=\frac{y}{2}+1} \frac{2x-y}{2} \, dx \, dy$$

by applying the transformation $u = \frac{2x - y}{2}$, $v = \frac{y}{2}$.

3

(c) Integrate $f(x, y, z) = x - 3y^2 + z$ over the line segment C joining the origin and the point (1, 1, 1).

3

Or

Evaluate $\int_C (xy + y + z) ds$ along the curve

$$\vec{r}(t) = 2t\hat{i} + t\hat{j} + (2 - 2t)\hat{k}, \quad 0 \le t \le 1$$

- 9. (a) Define vector field and write the formula for vector field in three dimensions. 1+1=2
 - (b) A coil spring lies along the helix $\vec{r}(t) = (\cos 4t)\hat{i} + (\sin 4t)\hat{j} + t\hat{k}; \ 0 \le t \le 2\pi$

The spring density is a constant $\delta = 1$. Find the spring's mass and moments of inertia and radius of gyration about the z-axis.

Or

Find the work done by the force

$$\vec{F} = (y - x^2)\hat{i} + (z - y^2)\hat{j} + (x - z^2)\hat{k}$$

over the curve $\vec{r}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}$; $0 \le t \le 1$ from (0, 0, 0) to (1, 1, 1).

- (c) Write the fundamental theorem for line integrals.
- 10. (a) State Green's theorem in flux-divergence form.

2

1

(b) Evaluate the integral $\oint_C (xy dy - y^2 dx)$ by using Green's theorem, where C is the square cut from the first quadrant by the lines x = 1 and y = 1.

3

5

(c) Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ by using Stokes' theorem, if $\vec{F} = xz\hat{i} + xy\hat{j} + 3xz\hat{k}$ and C is the boundary of the portion of the plane 2x + y + z = 2 in the first octant and traversed counter-clockwise.

Find the surface area of a sphere of radius a with parametrization formula $\vec{r}(\phi, \theta) = (a\sin\phi\cos\theta)\hat{i} + (a\sin\phi\sin\theta)\hat{j} + (a\cos\phi)\hat{k}$ where $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$.

Or

(d) State and prove divergence theorem. 6
