# 3 SEM TDC CHMH (CBCS) C 7

### 2021

( Held in January/February, 2022 )

### **CHEMISTRY**

(Core)

Paper: C-7

### (Physical Chemistry)

Full Marks: 53 Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

#### Choose the correct answer:

 $1 \times 5 = 5$ 

(a) When benzoic acid distributes between benzene and water, it dimerizes in benzene layer. The exact expression for Nernst's distribution law is

(i) 
$$\sqrt{\frac{C_{\text{org}}}{C_{\text{aq}}}}$$

(ii) 
$$\frac{C_{\text{org}}^2}{C_{\text{ag}}}$$

(i) 
$$\sqrt{\frac{C_{
m org}}{C_{
m aq}}}$$
(iii)  $\frac{\sqrt{C_{
m org}}}{C_{
m aq}}$ 

(iv) 
$$\frac{C_{\text{org}}}{\sqrt{C_{\text{aq}}}}$$

(b) For a chemical reaction

$$T_{\frac{1}{2}} \propto \frac{1}{a^2}$$

where a is the initial concentration of the reactant. The order of the reaction is

- (i) 3
- (ii) 2
- (iii) 1
- (iv) 0
- (c) Which of the following is not a characteristic of enzyme catalysis?
  - (i) Enzyme catalysts are highly efficient
  - (ii) One enzyme can catalyse more than one reaction
  - (iii) The effectiveness of catalyst is maximum at its optimum temperature
  - (iv) Enzyme catalysis is dependent upon the pH of the solution

- (d) Sulphur can exist as sulphur rhombic(s), sulphur monoclinic(s), liquid sulphur(l) and sulphur vapour(g).

  Maximum number of phases which can coexist in equilibrium can be
  - (i) 3
  - (ii) 4
  - (iii) 1
  - (iv) 2
- (e) The absorbent used for humidity and moisture control in many utility items is
  - (i) activated charcoal
  - (ii) silica gel
  - (iii) metal nanoparticles
  - (iv) finely divided nickel
- 2. Answer the following questions: 2×5=10
  - (a) Water and sulphur both are onecomponent system. Water system has one triple point but, sulphur system has more than one triple point in the phase diagram. Explain.

| (b)             | What is critical solution temperature (CST)? Give one example each of solution with lower and upper CST.                                                                                 |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 1+1=2                                                                                                                                                                                    |
| (c)             | Describe the Ostwald isolation method for determination of order of a reaction. 2                                                                                                        |
| (d)             | Explain the effect of particle size in heterogeneous catalysis.                                                                                                                          |
| (e)             | When the adsorbate is adsorbed onto a surface of adsorbent, then both the enthalpy and entropy changes become negative. Explain.                                                         |
| 3. Ans          | wer any two of the following questions:                                                                                                                                                  |
| (a)             | (i) Derive Gibbs 6×2=12                                                                                                                                                                  |
| ( <i>a</i> )    | (i) Derive Gibbs phase rule thermodynamically for reactive and non-reactive systems.                                                                                                     |
|                 | (ii) What are condensed systems? Write phase rule equation for such systems.  1+1=2                                                                                                      |
| (b)             | (i) Melting point of pure Pb is 327 °C and of pure Ag is 961 °C and eutectic point is observed at 303 °C with 97.4% of Pb and 2.6% of Ag. Draw a labelled phase diagram of Pb-Ag system. |
| 22P <b>/209</b> | 1)                                                                                                                                                                                       |
|                 | (Continued)                                                                                                                                                                              |

| (ii) | What  | do   | you    | mean     | by  | peritect | tic   |
|------|-------|------|--------|----------|-----|----------|-------|
|      | chang | e? I | Discus | ss the p | has | e diagra | m     |
|      | of Na | 2SO  | 4-H2   | O syste  | m.  |          | 1+3=4 |

- (c) (i) Derive Duhem-Margules equation for a binary solution.
  - (ii) State Nernst distribution law. State the principle of solvent extraction on the basis of Nernst distribution law. 1+2=3
- 4. Answer any two of the following questions:

6×2=12

3

(a) (i) Derive an expression of rate constant for the following second-order reaction:

## $A + B \rightarrow \text{products}$

Prove that when either A or B is taken in excess, then this second-order reaction shows first-order kinetics. 3+1=4

- (ii) The values of rate constants for a chemical reaction at 427 °C and 527 °C are 2.0 s<sup>-1</sup> and 20 s<sup>-1</sup> respectively. Evaluate energy of activation for the reaction.
- (b) (i) Give one example of reversible reaction. Discuss the kinetics of first-order reversible reaction

*A* ≠ *B* 1+3=4

(Turn Over)

2

(ii) Write different steps involved in the

|      |     | mechanism of chain reactions.                                                                                                                                                                                        | 2   |
|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | (c) | (i) Discuss Lindemann's mechanism of a unimolecular gas phase reaction. Show that according to this mechanism a gaseous unimolecular reaction becomes first order at high pressure and second order at low pressure. | 4   |
|      |     | (ii) Discuss the drawbacks of collision theory of reaction rate.                                                                                                                                                     | 2   |
|      | Ans | wer any two of the following questions:                                                                                                                                                                              |     |
|      |     | 4½×2:                                                                                                                                                                                                                | =9  |
|      | (a) | Derive Michaelis-Menten equation for enzyme catalysis.                                                                                                                                                               | 1/2 |
|      | (b) | Discuss different steps of adsorption theory for heterogeneous catalysis.                                                                                                                                            | 1/2 |
|      | (c) | What is acid-base catalysis? Discuss different mechanisms of acid-base catalysis. 1+3½=4                                                                                                                             | 1/2 |
| 0    | Ans | wer any one of the following questions:                                                                                                                                                                              | 5   |
|      | (a) | Derive Langmuir adsorption equation. Show that under low pressure condition the Langmuir adsorption equation becomes equal to Freundlich adsorption equation.  4+1                                                   | =5  |
| 1000 |     |                                                                                                                                                                                                                      |     |

- (b) (i) Show five main categories of adsorption isotherms diagrammatically. 21/2
  - (ii) Write basic differences between chemisorption and physisorption.
    Why is heat of adsorption greater for chemisorption than physisorption? 1½+1=2½

\*\*\*