5 SEM TDC PHY M 2

2021

(March)

PHYSICS

(Major)

Course: 502

(Electrodynamics)

Full Marks: 60
Pass Marks: 24 /18

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×6=6
 - (a) If \(\vec{E} \) and \(\vec{B} \) represent the electric and magnetic field vectors of electromagnetic waves, then the direction of propagation of the electromagnetic wave is that of
 - (i) \vec{E}
 - (ii) \vec{B}
 - (iii) $\vec{E} \times \vec{B}$
 - (iv) $\vec{B} \times \vec{E}$

- (b) Depth of penetration for silver is
 - (i) 2·5 m
 - (ii) 0·01 mm
 - (iii) 0.0667 mm
 - (iv) 0.064 mm
- (c) The ratio of the electric to the magnetic energy density is

(i)
$$\frac{\frac{1}{2}\epsilon E_0^2}{\frac{1}{2}\mu H_0^2} = 1$$

(ii)
$$\frac{\frac{1}{2} \varepsilon E_0^2}{\frac{1}{2} \mu H_0^2} = -1$$

(iii)
$$\frac{\frac{1}{2}\varepsilon E_0^2}{\frac{1}{2}\mu H_0^2} \le \frac{1}{50}$$

(iv)
$$\frac{\frac{1}{2} \varepsilon E_0^2}{\frac{1}{2} \mu H_0^2} \ge \frac{1}{50}$$

(d) A man in a spaceship holds a stick measuring 1 m horizontally. The spaceship is moving along the horizontal with a speed v. The stick is turned inside the spaceship through 90°. The ratio of the length of the stick as measured by the earth observer, before and after rotation, is

- (i) 1
- (ii) > 1
- (iii) < 1
- (iv) zero
- (e) If vectors E and H are in phase, the expression for intrinsic impedance of space is
 - (i) $\sqrt{\frac{\mu}{\epsilon}}$

(ii) $\sqrt{\frac{\mu_0}{\epsilon_0}}$

(iii) $\sqrt{\frac{1}{\mu\epsilon}}$

- (iv) $\sqrt{\frac{1}{\mu_0 \epsilon_0}}$
- (f) Fresnel's equation in case of s-polarization, the transmission coefficient (T_s) is

(i)
$$T_{\rm s} = \frac{2\cos\theta_i}{\cos\theta_i + n_{12}\cos\theta_i}$$

(ii)
$$T_{S} = \frac{2\cos\theta_{i}\sin\theta_{i}}{\cos\theta_{i} - n_{12}\cos\theta_{i}}$$

(iii)
$$T_{\rm S} = \frac{\cos \theta_i - n_{12} \cos \theta_i}{\cos \theta_i + n_{12} \cos \theta_i}$$

(iv)
$$T_{s} = \frac{\cos \theta_{i} + n_{12} \cos \theta_{i}}{\cos \theta_{i} - n_{12} \cos \theta_{i}}$$

- 2. Answer any five of the following: 3×5=15
 - (a) Deduce Maxwell's equation from Faraday's law of induction.
 - (b) What is Brewster's angle? Show that

$$\theta_{\rm B} = \cot^{-1}\left(\frac{n_1}{n_2}\right)$$

- (c) What are the main postulates of Einstein special theory of relativity?
- (d) Explain what you understand by magnetic vector potential.
- (e) Show that in a good conductor, the phase difference between E vector and H vector is π/4.
- (f) Describe the relativity of simultaneity on the basis of Lorentz transformation equation.
- (g) Deduce the value of reflection and transmission coefficients at glass-air interface for normal angle of incidence.

3.	(a)	State Ampere's circuital law and discuss	
		how it was modified to include the	
		displacement current.	4
		COLD TO SHARE A SHARE TO LOW SHOPS IN	
	(b)	Find the momentum density and	
		radiation pressure of electromagnetic	
		waves. 2+2=	=4
4.	(a)	Write down the Maxwell's equations	
	()	involving the scalar and vector	
		potentials. Explain the gauge transfor-	
		mation used.	5
		A plant electromagners area to see also	
		Or and wallen and outling	
		Obtain Poynting theorem for the	
		conservation of energy in an	
		electromagnetic field and discuss the	
		physical meaning of each term in	
		resulting equation.	5
	(b)	Calculate the value of Poynting vector	
	(D)	at the surface of the sun if the power	
		radiated by sun is 3.8×10^{26} watt while	
		its radius is 7×10^8 m.	2
		TIS TRUITED TO THE	
		and the design denser	
5.	(a)	Show that if the first media is denser,	
		there is a difference of phase between	24

(Turn Over)

the reflected parallel and perpendicular components given by

$$\tan \frac{\partial}{\partial z} = \frac{\cos \theta_i \sqrt{\sin^2 \theta_i - \left(\frac{n_2}{n_1}\right)^2}}{\sin^2 \theta_i}$$

(b) How is the polarization of an electromagnetic wave affected when it crosses the plane interface between two dielectrics?

6. A plane electromagnetic wave is incident on a plane boundary between two non-conducting media. Specify the boundary conditions and hence derive Fresnel's formulae for the reflected and transmitted intensities.

Or

Obtain the boundary conditions satisfied by electromagnetic field vectors \overrightarrow{B} and \overrightarrow{H} on a plane surface between two media.

7. Explain in brief the nullity of ether-hypothesis.

Or

Describe Michelson-Morley experiment and its results.

16-21/277

(Continued)

3

5

5

5

5

5

8. (a) Obtain the relativistic kinetic energy (T) relation

$$T = m_0 c^2 \left[\frac{1}{\sqrt{1 - v^2 / c^2}} - 1 \right]$$

(b) Deduce the velocity at which the mass of a particle becomes 10 times its rest mass.

2