5 SEM TDC PHY M 1

2021

(March)

PHYSICS

(Major)

Course: 501

(Mathematical Physics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following (any *five*): 1×5=5
 - (a) A Fourier series of a function f(x) contains only cosine terms, if function f(x) is
 - (i) an odd function of x
 - (ii) an even function of x
 - (iii) an exponential function containing real terms only
 - (iv) It is not possible

- (b) What is the sum of residues of the function $f(z) = \frac{e^z}{z^2 + a^2}$ at all its poles?
 - (i) $\frac{\sin a}{a}$
 - (ii) $-\frac{\sin a}{a}$
 - (iii) $\frac{\cos a}{a}$
 - $(iv) \frac{\cos a}{a}$
- (c) The general solution of the ordinary differential equation $\frac{d^2y}{dx^2} + 4y = 0$ is
 - (i) $Ae^{2x} + Be^{-2x}$
 - (ii) $(A+Bx)e^{-2x}$
 - (iii) $A\cos 2x + B\sin 2x$
 - (iv) $(A + Bx)\cos 2x$
- (d) If z_1 and z_2 be two complex numbers, then $|z_1 \pm z_2|$ is
 - $(i) \leq |z_1| + |z_2|$
 - (ii) $< |z_1| |z_2|$
 - $(iii) > |z_1| + |z_2|$
 - $(iv) \ge |z_1| + |z_2|$

(e) Using Fourier integral formula, find the value of

$$\frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda \ (a > 0)$$

- (i) 1
- (ii) eax
- (iii) e^{-ax}
- (iv) None of the above
- (f) $\Gamma\left(-\frac{3}{2}\right)$ is equal to
 - (i) $\frac{3\pi}{4}$
 - (ii) $-\frac{3\pi}{4}$
 - (iii) $\frac{3\pi}{4}\sqrt{\pi}$
 - (iv) $\frac{3\pi}{2}\sqrt{\pi}$
- (g) Power series solution is applicable to differential equations which are
 - (i) second order of degree n
 - (ii) partial differential equations
 - (iii) linear homogeneous
 - (iv) None of the above

- **2.** Answer any *five* of the following: $2 \times 5 = 10$
 - (a) Show that

$$P_n(-x) = (-1)^n P_n(x)$$

- (b) State Fourier's theorem and Dirichlet condition.
- (c) Examine whether $\sin z$ is an analytic function of z.
- (d) Prove that

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

- (e) Expand in Fourier series the function f(x) = x in the interval -1 < x < 1.
- (f) Solve the following differential equation:

$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 13y = 0; \ y(0) = 2, \ \frac{dy}{dx} = 1$$

(g) Using Cauchy's integral formula, calculate the integral

$$\int_{C} \frac{zdz}{(9-z^2)(z+i)}$$

where C is the circle |z| = 2 described in the positive sense.

3. (a) Find the solutions of the equation

$$\frac{d^2y}{dx^2} + w^2y = 0$$

using Frobenius method.

5

5

O

Solve in series the equation

$$\frac{d^2y}{dx^2} + x^2y = 0$$

(b) Show that

$$\int_{-1}^{+1} \left[P_n(x) \right]^2 dx = \frac{2}{2n+1}$$

(c) Show that

$$\Gamma m \Gamma (1-m) = \frac{\pi}{\sin m\pi}$$
 4

(d) Solve

$$(3x+2y^2)ydx+2x(2x+3y^2)dy=0$$
 4

(e) Show that for |x| is large

$$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$$
 3

4. (a) State and prove Cauchy's residue theorem.

4

(b) Find the Taylor series expansion of a function of the complex variable

$$f(z) = \frac{1}{(z-1)(z-3)}$$
 about the point $z = 4$.

Also, find its region of convergence.

4

Or

Apply the method of contour integration to evaluate

$$\int_0^\infty \frac{1-\cos x}{x^2} dx$$

- (c) What is an analytic function? Derive the necessary condition for a function to be analytic.

 1+3=4
- 5. (a) A sawtooth wave is given by

$$f(x) = x$$
 for $-\pi \le x \le \pi$

Show that

$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin nx}{n}$$

Also, plot the graphical representation of the function f(x) in the interval $[-\pi, \pi]$ and its periodic extension outside $[-\pi, \pi]$.

(b) Obtain Fourier series for the expansion $f(x) = x \sin x$ in the interval $-\pi < x < \pi$. Hence deduce that

$$\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \dots$$

(c) Expand the function $f(x) = \sin x$ as a cosine series in the interval $(0, \pi)$.

Or

Find the Fourier series to represent $x-x^2$ from $x=-\pi$ to $x=\pi$.

