5 SEM TDC MTH M 2

2021

(March)

MATHEMATICS

(Major)

Course: 502

(Linear Algebra and Number Theory)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP—A

(Linear Algebra)

(Marks: 40)

1. (a) Let W be a vector subspace of a vector space V and $w \in W$, then what is w+W?

1

(b) In any vector space V, show that $(-\alpha)x = -(\alpha x)$ for each $\alpha \in \mathbb{R}$ and each $x \in V$.

2

2. (a) Answer any two from the following:

3×2=6

(i) Let $S = \{(a, b) : a, b \in \mathbb{R}\}$ and for $(a_1, b_1), (a_2, b_2) \in S$ and $c \in \mathbb{R}$, defined

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, 0)$$

 $c(a_1, b_1) = (ca_1, 0)$

Show that S is not a vector space w.r.t. the operations defined above.

- (ii) Prove that the intersection of subspaces of a vector space *V* is a subspace of *V*.
- (iii) Show that $\{(1, 2), (4, 3)\}$ is a basis of \mathbb{R}^2 .
- (b) In the vector space $P_3(\mathbb{R})$ of all polynomials of degree ≤ 3 with real coefficients, prove that $2x^3 2x^2 + 12x 6$ is a linear combination of $x^3 2x^2 5x 3$ and $3x^3 5x^2 4x 9$.

5

Or

Let V be a vector space. Then prove that $\{v_1, v_2, \dots, v_n\}$ is linearly dependent if and only if one of the v_i 's is linear combination of the other v_j 's.

- (c) Show that $W = \{(x, y, z) \in \mathbb{R}^3 | y = z\}$ is a vector subspace of \mathbb{R}^3 . Find a basis for W and hence find $\dim(W)$.
- 3. (a) What do you understand by affine subspace of a vector space? 2
 - (b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by T(x, y) = (x, y+3)

Determine whether T is linear. 3

(c) Find the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$T(a_1, a_2) = (a_1 + 3a_2, 0, 2a_1 - 4a_2)$$
 3

(Turn Over)

4. Answer any two from the following:

6×2=12

(a) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$T(a_1, a_2, a_3) = (a_1 - a_2, 2a_3)$$

Compute the nullity and rank of T.

- (b) Let V and W be finite vector spaces of equal dimensions and let $T: V \to W$ be linear. Then prove that the following are equivalent:
 - (i) T is one-one
 - (ii) T is onto
 - (iii) Rank $T = \dim(V)$
- (c) Let V and W be vector spaces over F and suppose that $\{v_1, v_2, \dots, v_n\}$ is a basis for V. Prove that for w_1, w_2, \dots, w_n in W, there exists exactly one linear transformation $T: V \to W$ such that $T(v_i) = w_i$ for $i = 1, 2, \dots, n$.

GROUP—B

(Number Theory)

(Marks: 40)

- 5. (a) Write the law of trichotomy of natural numbers.

 (b) Answer any two from the following:
 - (b) Answer any *two* from the following: 3×2=6
 - (i) Prove that ac|bc, $c \neq 0$ gives a|b.
 - (ii) Prove that if x and y are odd, then $x^2 + y^2$ is even but not divisible by 4.
 - (iii) Prove that two integers a and b are relatively prime if there exists integers x and y such that 1 = ax + by.
- 6. Answer any two from the following: 4×2=8
 - (a) Prove that any prime of the form 3n+1 is also of the form 6m+1.
 - (b) Prove that there are arbitrary large gaps in the series of primes. Hence list 5 consecutive composite numbers.
 - (c) Find the number of zeroes with which the decimal representation of 50! terminates.

7.	(a)	State Wilson's theorem.
	(b)	If $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, then
		prove that $ac \equiv bd \pmod{m}$.
	(c)	Find the general solution in integers
		3x + 5y = 1.
8.	Ans	wer any two from the following: 4×2=8
		Solve the following:
		$x \equiv 1 \pmod{3}$
		$x \equiv 1 \pmod{5}$
		$x \equiv 1 \pmod{7}$
	(b)	Prove that if $gcd(a, 35) = 1$, then
		$a^{12} \equiv 1 \pmod{35}.$
	(c)	Using Fermat's theorem, find the
		unit digit of 3 ⁴⁰⁰ .
9.	(a)	Write the value of σ (5).
		Answer any three from the following:
15	(5)	3×3=9
		(i) Prove that
		$\prod_{d\mid n} d = n^{\frac{1}{2}d(n)}$
		where $d(n)$ denotes the number of
		positive divisors of

positive divisors of n.

- (ii) If p is prime, show that $\phi(p) + \sigma(p) = pd(p)$
- (iii) Find the value of σ_2 (8).
- (iv) Define Euler's function $\phi(n)$ for $n \in \mathbb{N}$. For any prime p, find the value of $\phi(p)$.

* * *