5 SEM TDC MTH M 1

2021

(March)

MATHEMATICS

(Major)

Course: 501

(Logic and Combinatorics, and Analysis—III)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Logic and Combinatorics)

(b) If the statements P, Q, R and S are assigned the truth values T, F, F and T respectively, then find the truth value of the following statement:

2

$$R \wedge S \rightarrow (P \rightarrow \sim Q \vee S)$$

(c) If $P \leftrightarrow Q$ is T, what can be said about the truth values of $P \leftrightarrow \sim Q$ and $\sim P \leftrightarrow Q$?

N 1964

(d) What is a tautology?

1

(e) Construct the truth table of the following statement:

 $P \rightarrow (Q \rightarrow R)$

Or

Prove that-

if $\models A$ and $\models A \rightarrow B$, then $\models B$

2. (a) Define a term.

- (b) Translate the following in symbols: $1\times2=2$
 - (i) All freshmen are intelligent.
 - (ii) Some rationals are not reals.

(c)	Find a formal derivation of	
	$A \to (B \xrightarrow{\cdot} C), \ \sim D \lor A, \ B \vDash D \to C$	3
(d)	Derive mathematically any one of the following:	4
	(i) All animals are mortal.All human beings are animals.Therefore, all human beings are mortal.	
	(ii) No human beings are quadrupeds. All women are human beings. Therefore, no women are quadrupeds.	
. (a)	What is the value of	
	$\sum_{r=0}^{n} C(n, r) ?$]
(b)	Find the coefficient of $x_1^3 x_2 x_3^2$ in the expansion of $(2x_1 - 3x_2 + 5x_3)^6$.	2
(c)	Show that if m and n are integers greater than 1, then $R(m,n) \le C(m+n-2, m-1)$.	

Or

For all integers n and r with $1 \le r \le n-1$, show that

$$C(n, r) = C(n-1, r) + C(n-1, r-1)$$

- **4.** Answer any *two* of the following: $4 \times 2 = 8$
 - (a) Find the number of integers between 1 and 1000, inclusive, that are not divisible by 5, 6 and 8.
 - (b) Determine the generating function for the sequence of squares

$$0, 1, 4, \dots, n^2, \dots$$

(c) Solve:

 $a_n = a_{n-2} + 4n$ with $a_0 = 3$, $a_1 = 2$ through a generating function.

GROUP-B

[Analysis—III (Complex Analysis)]

- 5. (a) What do you mean by singular point of a function?
 - (b) Write Cauchy-Riemann equations.

1

(c) If f(z) = u + iv is an analytic function in domain D, prove that the curves u = constant, v = constant, form two orthogonal families.

(d) Prove that the function f(z) = u + iv, where

$$f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}, \ z \neq 0, \ f(0) = 0$$

is continuous and Cauchy-Riemann equations are satisfied at the origin yet f'(z) does not exist at z=0.

Or

If $u = x^3 - 3xy^2$, show that there exists a function v(x, y) such that w = u + iv is analytic in a finite region.

6. (a) Define Jordan arc.

(b) Verify Cauchy's theorem by integrating e^{iz} along the boundary of the triangle with vertices at the points 1+i, -1+i and -1-i.

(c) If a function f(z) is analytic within and on a closed contour C and a is any point lying in it, then prove that

 $f'(a) = \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z-a)^2}$

5

3

5

1

(d) Evaluate

$$\int_C \frac{e^{2z}}{(z+1)^4} \, dz$$

where C is |z|=3.

4

Or

If f(z) is a continuous function in a domain D and if for every closed contour C in the domain D

$$\int_C f(z) \, dz = 0$$

then prove that f(z) is analytic within D.

7. (a) State and prove Taylor's series. 1+5=6

Or

Find Laurent's series about the indicated singularity of the function

$$f(z) = \frac{e^{2z}}{(z-1)^3}, z=1$$

Name the type of singularity and give the region of convergence. 3+2+1=6

(b) Expand

$$\log\left(\frac{1+z}{1-z}\right)$$

in a Taylor's series about z=0.

2

16-21/191

(Continued)

- 8. (a) Define essential singularity of an analytic function f(z).
 - Find the singularities of

$$\frac{\cot(\pi z)}{(z-a)^2}$$

at z = a and $z = \infty$.

(b)

2

(c) Evaluate any two of the following: 5×2=10

(i)
$$\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta$$

(ii)
$$\int_0^\infty \frac{dx}{1+x^2}$$

(iii)
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{\left(x^2 + 1\right)^2}$$
