2016

(November)

PHYSICS

(Major)

Course: 501

(Mathematical Physics)

Full Marks: 60

Pass Marks: 24 (Backlog)/18 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option:

1×6=6

(a) Which of the following integrals is non-vanishing?

(i)
$$\int_{-1}^{+1} x P_n \frac{dP_m}{dx} dx$$
 for $n > m$

(ii)
$$\int_{-1}^{+1} P_n(x) dx$$

(iii)
$$\int_{-1}^{+1} x^2 P_5(x) dx$$

(iv)
$$\int_{-1}^{+1} P_0(x) dx$$

(b) Given
$$\Gamma(3)\Gamma\left(\frac{5}{2}\right) = A\Gamma(6)$$
, find A.

(i)
$$\sqrt{\pi}$$

(ii)
$$\sqrt{\pi}/2$$

(iii)
$$\sqrt{\pi}/2^3$$

(iv)
$$\sqrt{\pi}/2^5$$

- (c) If $u = x^3 3xy^2$, the analytic function f(z) = u + iv will be
 - (i) z^3
 - (ii) z^{-3}
 - (iii) $|z|^3$
 - (iv) None of the above
- (d) What is the ratio of coefficients of z^n and $\frac{1}{z^n}$ in the Laurent's expansion of the function $\cosh\left(z+\frac{1}{z}\right)$?
 - (i) O
 - (ii) $\frac{1}{2}$
 - (iii) 1
 - (iv) None of the above

- (e) The value of a_0 in the Fourier series of t^2 in the interval $-\pi < t < \pi$ is
 - (i) 0
 - (ii) $\frac{\pi^2}{3}$
 - (iii) $\frac{\pi^2}{8}$
 - (iv) $\frac{\pi^2}{4}$
- (f) Using Fourier integral, the value of $\int_0^\infty \frac{\cos xu}{1+u^2} du \ (x > 0) \text{ is found to be}$
 - (i) $\frac{\pi}{2}$
 - (ii) $\frac{\pi}{2}e^x$
 - (iii) $\frac{2}{\pi}e^{-x}$
 - (iv) $\frac{\pi}{2}e^{-x}$
- 2. (a) Prove that

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$$

- Find the value of a_n in the Fourier series (b) of f(x) in the interval $(-\pi, \pi)$, where $f(x) = \pi + x$, when $-\pi < x < 0$ $=\pi-x$, when $0 < x < \pi$ 2 (c) Prove that $P_{2m}(-\mu) = P_{2m}(\mu)$. 2 Express the integral $I = \int_0^\infty \frac{x^3}{(1+x)^5} dx$ in (d) terms of beta and gamma functions and hence find its value. 2 (e) Using Cauchy's integral evaluate the integral $\oint \frac{z^2}{(z^2-1)} dz$ around the unit circle with centre at z=1. 2 (f)If $u(x, y) = x^2 - y^2$ is the real part of an analytic function f(z) = u + iv, find v. 2 Solve the equation y'' - y = 0 with (a) y(0) = 4, y'(0) = -2. 3 (b) Find solution of the the
- homogeneous equation $y'' + 4y = 8x^2$.
- (c) Prove that $P_n(x) = \frac{1}{2^n n!} \left(\frac{d}{dx}\right)^n (x^2 1)^n$

3

(d) Prove that

$$(2n+1) x P_n(x) = (n+1) P_{n+1}(x) + n P_{n-1}(x)$$
Or

Prove that Legendre polynomial $P_n(\mu)$ is the coefficient of h^2 in $(1-2\mu h+h^2)^{-1/2}$.

- **4.** (a) Prove that if f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then u and v satisfy $\nabla^2 u = 0$ and $\nabla^2 v = 0$.
 - (b) Prove that if f(z) is an analytic function on and within the closed contour c, the value of f(z) at a point $z = \varepsilon$ inside c is given by

$$f(\varepsilon) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - \varepsilon} dz$$

(c) Answer any two from the following:

 $3 \times 2 = 6$

4

4

(i) Show that the triangle whose vertices are the points z_1 , z_2 , z_3 in Argand diagram will be equilateral if

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$$

(ii) If f(z) is an analytic function of |z|, prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$$

(iii) Obtain the expansion

$$f(z) = f(a) + 2\left\{\frac{z-a}{2}f'\left(\frac{z+a}{2}\right) + \frac{(z-a)^3}{2^3 3!}f'''\left(\frac{z+a}{2}\right) + \frac{(z-a)^5}{2^5 5!}f^{(5)}\left(\frac{z+a}{2}\right) + \cdots\right\}$$

and determine its range of validity.

5. (a) Find an even function of x which is equal to kx for $0 \le x \le l/2$ and is

$$k(l-x)$$
 for $l/2 \le x \le l$

(b) Find the series of sines and cosines of multiples of x which represents f(x) in the interval $-\pi < x < \pi$, where

$$f(x) = 0 , \text{ when } -\pi < x < 0$$

$$= \frac{\pi x}{4}, \text{ when } 0 < x < \pi$$
4

(c) Show that the rectified current through a half-wave rectifier is

$$I(t) = \frac{I_0}{\pi} - \frac{2I_0}{\pi} \left(\frac{1}{3} \cos 2\omega t + \frac{1}{15} \cos 4\omega t + \cdots \right) + \frac{1}{2} I_0 \sin \omega t$$

P7/397

(d) State and prove Parseval's theorem. 3

Or

Obtain the Fourier series for a triangular wave given by

$$y=0$$
 at $t=0$
 $y=a$ at $t=T/2$
 $y=0$ at $t=T$

2016

(November)

PHYSICS

(Major)

Course: 502

(Electrodynamics)

Full Marks: 60

Pass Marks: 24 (Backlog) / 18 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

1×6=6

- (a) Which of the following relations is correct?
 - (i) $\sqrt{\epsilon_0}E_0 = \sqrt{\mu_0}$
 - (ii) $E_0 = \sqrt{(\varepsilon_0 \mu_0)} B_0$
- (iii) $\sqrt{(\varepsilon_0 \mu_0)} E_0 = B_0$
 - (iv) $\sqrt{\varepsilon_0 E_0} = \sqrt{\mu_0 B_0}$

(b) In polarization for normal incidence, the reflected coefficient (R) and transmission coefficient (T) is related by

(i)
$$R+T=1$$

(ii)
$$R+T=2$$

(iv)
$$R = 2T$$

(c) If V is the potential difference between the two ends of a wire of length L, the magnetic field is circumferential at the surface of radius r, then the magnitude of the Poynting vector is

(i)
$$\frac{VI}{2\pi rL}$$

(ii)
$$\frac{VI}{4\pi rL}$$

(iii)
$$\frac{2VI}{\pi r^2 L}$$

(iv)
$$\frac{2}{3} \frac{VI}{\pi rL}$$

(Where the symbols have their usual meanings.)

(d) The kinetic energy of a particle moving with relativistic speed v is given by

(i)
$$\frac{1}{2}mv^2$$

(ii)
$$\frac{1}{2} \frac{m_0 v^2}{\sqrt{\left[1 - \left(\frac{v^2}{c^2}\right)\right]}}$$

(iii)
$$\frac{m_0}{\sqrt{\left[1-\left(\frac{v^2}{c^2}\right)\right]}}c^2$$

(iv)
$$\left(\frac{m_0}{\sqrt{\left[1 - \left(\frac{v^2}{c^2}\right)\right]}} - m_0 \right) c^2$$

(Where the symbols have their usual meanings.)

(e) In electric and magnetic field vectors of a monochromatic plane wave in conducting medium, the skin depth is determined by the relation

(i)
$$\left(\frac{2\omega}{\mu_0\sigma}\right)^{1/2}$$

(ii)
$$\left(\frac{2}{\mu_0 \sigma \omega}\right)^{1/2}$$

(iii)
$$\left(\frac{\sigma}{2\mu_0\omega}\right)^{1/2}$$

(iv)
$$\left(\frac{\sigma\omega}{2\mu_0}\right)^{1/2}$$

(Where the symbols have their usual meanings.)

(f) The total power radiated by an accelerated charge at low velocity is

(i)
$$\frac{3}{2} \frac{e^2 a^2}{\pi \varepsilon_0 \varepsilon}$$

(ii)
$$\frac{e^2a^2}{2\pi\,\epsilon_0\epsilon}$$

(iii)
$$\frac{e^2a^2}{4\pi\epsilon_0\epsilon}$$

(iv)
$$\frac{e^2a^2}{6\pi\epsilon_0\epsilon^3}$$

(Where the symbols have their usual meanings.)

- 2. Answer any five of the following: 3×5=15
 - (a) What are the various properties of electromagnetic wave?
 - (b) Establish Maxwell's first equation in differential and integral forms.
 - (c) A neutron is travelling through the laboratory at three-fifths of speed of light. If the lifetime of neutron is 16 min, how long does it last?
 - (d) Derive and explain Brewster's law on the basis of electromagnetic theory.
 - (e) Discuss the phenomenon of total internal reflection of electromagnetic waves.
 - (f) Explain in brief the invalidity of ether hypothesis.
 - (g) Deduce the differential form of Lorentz gauge.
 - 3. How was displacement current in electromagnetic wave introduced by Maxwell from generalized Ampere's law?

	Find the momentum density and radiation pressure of electromagnetic waves. 2+2=	- 4
	Deduce the equation for electric and magnetic field vectors of electromagnetic waves propagated in a conducting medium.	5
6.	Deduce Fresnel's equation for reflection and refraction of electromagnetic wave at normal incidence.	5
7.	How is the polarization of an electromagnetic wave affected when it crosses the plane interface between two dielectrics?	5
8.	Calculate the time averaged energy density of an electromagnetic wave in a conducting medium.	5
	Or	
	Derive the equation for phase velocity of electromagnetic wave propagating in conducting medium.	5
9.	Derive Lorentz transformation equations.	5
	Total Control of the	

10.	(a)	Deduce Einstein mass energy relation $E = mc^2$.	3
	(b)	What do you mean by improper length?	2
		Or	
	+	Derive the relation for the relativistic transformation of velocities.	2

2016

(November)

PHYSICS

(Major)

Course: 503

(Atomic and Molecular Physics)

Full Marks: 60

Pass Marks: 24 (Backlog) / 18 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

1.	Fill	in the blanks (any five): 1×5=5
	(a)	The value of spin quantum number of
		an electron in hydrogen atom is
	(b)	The D-lines of sodium originate from
		transition.
	(c)	Normal Zeeman effect occurs only in
		atoms which have a total spin S equal to
	BID.	- dracings a spill billion in a
	(d)	For heavier atoms coupling holds.
	(e)	The procedure to achieve population
		inversion is called
	<i>(f)</i>	If $\Delta v = \frac{eB}{\Delta v}$ is the frequency shift in the
		$4\pi m$
		Zeeman splitting of a spectrum, then
		the corresponding wavelength shift

 $\Delta \lambda =$ _____.

- 2. Answer any five of the following: 2×5=10
 - (a) Find the possible values of j and m_j for states l=3 and $s=\frac{1}{2}$.
 - (b) State Bohr's postulates regarding the atomic model.
 - (c) Calculate the radius of the first Bohr orbit of hydrogen atom. Given $e=1.6\times10^{-19}$ C, $h=6.63\times10^{-34}$ joule-sec, $k=9\times10^{9}$ N m²/c² and $m=9\cdot1\times10^{-31}$ kg.
 - (d) Discuss the essential requirements for producing laser action.
 - (e) Distinguish between Raman scattering and Rayleigh scattering.
 - (f) Calculate Lande's g-factor for s-electron.
- 3. (a) Describe the different types of coupling in atom.

Or

The first member of Balmer series of hydrogen has a wavelength of 6563 Å. Calculate the wavelength of its (i) second order and (ii) third order. In which region of the e.m. spectrum does this series lie? 2+2+1=5

(b) Describe the principle, construction and working of Ruby laser with necessary diagram.

5

5

4. Discuss the Sommerfeld theory of elliptical orbit of hydrogen atom and compare its results with those of Bohr's theory of circular orbits.

7

Or

What is Raman effect? Prove that to be Raman active, a molecular vibration or rotation must cause some change in molecular polarizability. Explain Raman lines intensity or polarization states from classical theory.

1+5+1=7

5. What are Stokes and anti-Stokes lines? In an experiment, the exciting line is at $\lambda = 5460$ Å and the Stokes line is at $\lambda = 5520$ Å. Find Raman shift and wavelength corresponding to anti-Stokes line.

Or

Discuss vibrational-rotational spectra of diatomic molecules with energy-level diagram. What are *P* and *R* branches in vibrational-rotational spectra? 5+2=7

6. What is anomalous Zeeman effect? In a normal Zeeman experiment, the Ca 4226 Å line splits into three lines separated by 0.25 Å in a magnetic field of 3 T. Determine e/m for the electron from these data. 2+4=6

Or

What are the draw backs of Rutherford's atomic model? Discuss briefly the success and failure of Bohr's atomic model. 2+2+2=6

7. Derive an expression for magnetic moment of orbiting electron. Why is orbital magnetic momentum (μ_l) oppositely directed to orbital angular momentum (P_l) ? 5+1=6

Or

What is Larmor precession? An atomic dipole is subjected to very strong magnetic field B so that it begins to precess about the field. Calculate the frequency of Larmor precession.

1+5=6

- 8. Write short notes on (any three): 3×3=9
 - (a) Stark effect
 - (b) Population inversion
 - (c) Space quantization
 - (d) Bohr's correspondence principle
 - (e) Einstein's coefficients
 - (f) Vector atom model

2016

(November)

PHYSICS

(Major)

Course: 504

(Electronics)

Full Marks: 60

Pass Marks: 24 (Backlog) / 18 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Answer the following as directed: $1 \times 6 = 6$
 - (a) The ratio of $I_{r.m.s.}$ and $I_{d.c.}$ of a full-wave rectifier is
 - (i) 0.48
 - (ii) 1·11
 - (iii) 1·21
 - (iv) 1.57

(Choose the correct answer)

- (b) The probability of occupancy of the Fermi level at room temperature is
 - (i) 100%
 - (ii) 0%
 - (iii) 50%
 - (iv) 75%

(Choose the correct answer)

- (c) Which of the following specifications is not correct for a common-collector amplifier?
 - (i) High-input impedance
 - (ii) Low-output impedance
 - (iii) High-voltage gain
 - (iv) High-current gain (Choose the correct answer)
- (d) What is the maximum theoretical efficiency of a class B push-pull transistor power amplifier?
- (e) Crystal oscillators are superior to L-C oscillators mainly because of their
 - (i) small crystal size
 - (ii) wide frequency range
 - (iii) high value of Q
 - (iv) better frequency stability (Choose the correct answer)

(f) What is the minimum number of gates required to implement the logic operation $X + \overline{X}Y$?

2. Answer the following questions:

2×6=12

- (a) Intrinsic resistivity of silicon at 27 °C is 2·8×10³ Ω-m. If the hole and electron mobilities are 0·18 m²V⁻¹s⁻¹ and 0·38 m²V⁻¹s⁻¹, calculate the intrinsic carrier density of silicon.
- (b) What is meant by mobility of a carrier?

 How does it depend upon temperature
 and doping concentration?
- (c) Distinguish between class A and class B amplifiers.
- (d) An amplifier with negative feedback gives an output of 12.5 V with an input of 1.5 V. If the feedback is removed, the same output can be obtained for an input of 0.25 V. Calculate the feedback fraction.
- (e) Show how an OP-AMP can be used as an integrator.
- (f) Simplify the following Boolean equation:

$$X = (A + \overline{B})(B + C)B$$

- 3. (a) Why do the energy levels of an atom become energy bands in a solid? Sketch the energy band picture for (i) an intrinsic, (ii) an n-type and (iii) a p-type semiconductor indicating the positions of the Fermi level, the donor or the acceptor levels. Distinguish between drift current and diffusion current in a semiconductor.

 2+3+2=7
 - (b) Explain the terms 'barrier potential' and 'depletion region' as applied to a p-n junction. Plot and explain the I-V characteristic of a junction diode. Also write an expression for diode current.

3+3+1=7

Or

Discuss the two mechanisms of junction breakdown. Draw the circuit diagram of a d.c. power supply and explain the action of Zener diode as voltage regulator.

3+1+3=7

- **4.** (a) What is non-linear distortion? Mention any two methods of minimizing it. 1+2=3
 - (b) What is transistor biasing? Discuss the base resistor method of biasing. What are its advantages and disadvantages?

1+3+2=6

Write down the hybrid equations of a transistor and define the h-parameters. What are the advantages of using the h-parameters? 1+3+2=6

5. (a) Explain the principle of operation of Wien bridge oscillator and find an expression for the frequency of oscillation.

(b) Discuss briefly the steps involved in fabricating a monolithic integrated circuit.

6. (a) Draw the logic diagram of a full adder.
Write the Boolean expressions for sum
and carry, and give its truth table.

2+1+2=5

(b) Establish that the NAND gate is a universal gate.

(c) Use K-map to simplify the following Boolean expression:

 $X = \overline{AB} + \overline{A}\overline{B}\overline{C} + AB\overline{C} + A\overline{B}\overline{C}$

(d) Draw a logic diagram for implementation of $Y = A\overline{B} + B\overline{A}$.

* *

5

4

2

1