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1. (a) Write each sjnnmetry in (the set of
symmetries of an equilateral triangle).

(b) What is the inverse of n -1 in U[n), n>2? 1

(c) The set {5, 15, 25, 35} is a group under
multiplication modulo 40. What is the
identity element of this group? 1

(d) Let a and b belong to a group G. Find an
X in G such that xabx~^ =^ba 2

(e) Show that identity element in a group is ^
unique.

(f) Find the order of each element of the
group ({0, 1, 2, 3, 4}, +5). 3
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(g) Show that the four permutations I, (oh),
(cd), (ab){cd) on four symbols a, b, c, d
form a fimte Abelian group with respect
to the permutation multiplication. 5

2. (a) In Zjo, write all the elements of <2 >. 1

(b) With the help of an example, show that
union of two subgroups of a group G is
not necessarily a subgroup of G. 2

(c) Define centre of an element of a group
and centre of a group. 2

(d) Let G be a group and ae G. Then prove
that the set H = {a"|nG2} is a
subgroup of G. 2

(e) Prove that the centre of a group G is
normal subgroup of G. 4

(f) Let H and K be two subgroups of a
group G. Then prove that HK is a
subgroup of G if and only if Hif = KH. 4

3. (a) If \a\ = 30, find < >.
1

(b) List the elements of the subgroup < 20
i

>

n ̂ 30* 1

(c) Find all generators of Zg. 2

(d) Express the permutation

.h 2 3 4 5 6^
ll 6 5 3 4 2

as a product of disjoint cycles. 2

( Continued )



( 3 )

(e) Find Oif) where
J1 2 3 4 5

^  1^2 4 5 3 1

(f) Let a be an element of order n in a group
and let fc be a positive integer. Then
prove that

< *^1 > and |aN =
gcd(n, fc)

Or

Prove that any two right cosets are
either identical or disjoint.

(g) Prove that a group of prime order is
cyclic.

(h) State and prove Lagrange's theorem. 5

(a) Define external direct product. 1
(b) Compute t/(8)®t/(10). Also find the

product (3, 7)(7, 9). 2
Prove that quotient group of a cyclic
group is cyclic. 3
If H is a normal subgroup of a finite
group G, then prove that for each ae G,

Let G be a finite Abelian group such that
its order 0(G) is divisible by a prime p.
Then prove that G has at least one
element of order p. 5
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Or

Let ff be a subgroup of a group G such

that e G, Vxg G. Then prove that H

is normal subgroup of G. Also prove that

— is AbeUan.
H

5. (a) Let (Z, +) and {E, +) be the group of
integers and even integers respectively.
Show that f:Z-^E denned by
f{x) ~ 2x, \/xe Z is & homomorphism. 2

(b) Prove that a homomorphic image
/: G -> G' is one-one if and only if
ker/ = {e}, where e is the identity of G. 3

(c) Prove that eveiy group G is isomorphic
to a permutation group. 5

(d) Prove that every homomorphic image of
a group G is isomorphic to some
quotient group of G. 5

Or

Let H be a normal subgroup of G and K
be a subgroup of G. Then prove that

HK ̂ K

H " HnK

★ ★ ★
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